
COMUNE DI CARRARA

PROVINCIA DI MASSA CARRARA

PIANO DI COLTIVAZIONE CAVA DENOMINATA "BETTOGLI A" N. 70

COORDINATO CON PIANI DI COLTIVAZIONE CAVE DENOMINATE "BETTOGLI B" N. 68 - "CALOCARA B" N. 103 - "CALOCARA C" N. 105

REDATTA AI SENSI DELLA L.R. 10/10

ES	ЬK	"	\vdash \cap	JI	⊢.
-	_,,			4 I	

V.F. Marmi S.r.I.

TITOLO:

RELAZIONE STABILITA' RAVANETI (ART. 32 PABE)

II TECNICO:

Dott. Ing. Massimo Gardenato ingegnere minerario

DATA:

GIUGNO 2025

FILE:

TAV.:

RelTec_25_70

via G.Pascoli, 44 55032 Castelnuovo Garf.na (LU) - via di Turigliano, 24a 54033 Carrara (MS) Tel. 0585 093077 e e-mail: studio@rocnet.net

RELAZIONE STABILITA' RAVANETI (ART.32 NTA PABE)

Premessa

La presente relazione tecnica è stata redatta dallo scrivente su incarico delle società FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l., a corredo della variante del piano di coltivazione coordinato tra le cave da loro esercite, al fine di valutare la stabilità dei ravaneti ai sensi dell'Art. 32 del PABE ricadenti all'interno delle loro aree.

Come visibile anche dall'estratto planimetrico successivo e dalle tavole allegate sono presenti tre ravaneti identificati come PGME, uno lato Torano dove si sviluppa la strada di arroccamento che conduce alle cave n°68 e n°70, uno lato Miseglia dove è presente la strada di arroccamento che conduce alle cave n°103 e 105 e uno, sempre lato Miseglia, dove si stanno completando le lavorazioni di realizzazione della strada a partire dal tornante di quota 509 ca., che risultano tutte aree classificate come aree di ravaneto con pericolosità geologica elevata e molto elevata.

A sensi dell'art. 32 delle Norme Attuative del PABE si procederà a condurre una specifica valutazione di stabilità dei ravaneti così perimetrati nelle more delle attività progettuali qui previste.

Individuazione Ravaneti

Come già accennato nella premessa, l'analisi di stabilità è stata condotta su tre differenti ravaneti classificati come ravaneti a pericolosità geologica elevata e molto elevata. Alcune porzioni dei tre ravaneti sono classificati nel PABE come ravaneto R1 e/o R2, ma tale aree non saranno modificate rispetto allo stato attuale.

Ravaneto lato Torano

Il ravaneto si estende a partire dalle cave n°68 e n°70 sino al fondo valle. In tale area è presente la strada di arroccamento che conduce alle cave del presente progetto e anche a quelle limitrofe. Le coltivazioni della cava n°70 prevedono di proseguire lo sviluppo degli sbassi nel piazzale principale della cava sino a quota 468.5 ca. con la realizzazione di

un'apertura sulla viabilità di accesso tra le quote 476 e 484 verso la strada di accesso comune sottostante previa parziale modifica della stessa nelle zone di disponibilità della VF Marmi s.r.l. e della confinante Bettogli Marmi. Per meglio comprendere le modifiche progettuali si vedano le tavole allegate.

Ravaneto lato Miseglia (Ovest)

Per quanto riguarda questo ravaneto si estende per per tutta la strada comprensoriale a partire dal basso sino a raggiungere la quota di ca. 557 da dove poi si sviluppano le rampe/strade da cui trovano accesso le cave 102, 103 e 105. Parte di questo ravaneto è classificato come ravaneto di tipo R1, ma come già detto in premessa questo ravaneto non subirà modifiche in quanto la strada comprensoriale e di accesso alle cave rimarrà la stessa.

Ravaneto lato Miseglia (Est)

In questo ravaneto si stanno completando le lavorazioni di realizzazione della strada a partire dal tornante di quota 509 ca. La ratio progettuale complessiva è stata quella di riportare il materiale necessario e sufficiente a realizzare il tracciato senza mettere in pericolo la strada più alta che conduce alla cava n. 105 che, tra le quote 584 e 598 ca., corre su un riporto appoggiato in un bastione. Questa opera, risalente ad oltre 20 anni or sono, ha reso necessario eseguire i lavori in riporto dato che eventuali opere in scavo avrebbero rischiato di comprometterne la stabilità.

Con la preventiva formazione del piano rompitratta alla quota 484-485 si è creato lo spazio necessario a contenere la formazione delle rampe stradali che condurranno a ricollegarsi, come da progetto, alla viabilità alle quote 557-558 ca. (vedasi elaborato fase 1). Il piano rompitratta nel vicino futuro dovrà poi accogliere il piazzale di gestione intermedia del detrito per il carico dei mezzi articolati.

A questo scopo il piano dovrà necessariamente essere leggermente ampliato nella porzione occidentale per raggiungere le dimensioni minime a consentire la manovra degli articolati, così come nella porzione orientale per consentire la formazione delle opere di contenimento e regimazione idraulica. In termini di opere di protezione complessive si evidenzia altresì la vasca di protezione e sicurezza predisposta a valle alle quote 330-350 realizzata preliminarmente ai lavori di formazione del rompitratta e della viabilità ad ora in corso.

Questa ampio vallo protetto da un argine di materiale di grandi dimensioni ha garantito una ottima funzionalità di sicurezza e si prevede pertanto di lasciarla in sito. L'argine di piede appare ben consolidato e il vallo interno molto ampio ed in grado di garantire la sicurezza futura rispetto a possibile rotolamenti massi lungo la scarpata. Per questo motivo si ritiene più sicuro sul lungo termine evitare operazioni scavo/ripresa al piede del materiale presente.

Analisi di stabilità scarpata su ravaneto

In questo capitolo si discuterà sulla stabilità dei versanti con ravaneti presenti nelle aree di interesse e parzialmente modificati dalle lavorazioni di progetto. Si sottolinea come tutti i ravaneti sono stati già ampiamente analizzati e studiati nel passato.

Caratterizzazione dei parametri geotecnici del deposito

Il materiale costituente i vari depositi detritici è quanto mai vario in termini di granulometria in quanto la sua formazione è costituita da accumuli di materiale di scarto proveniente dall'attività estrattiva.

La granulometria è variabile: in prevalenza, gli accumuli sono costituiti da clasti da decimetrici a metrici, mentre la frazione fine è subordinata, dipendente dall'età del ravaneto e quindi dalla metodologia utilizzata per l'estrazione dei blocchi di marmo. Massi e blocchi tendono ad accumularsi generalmente al piede, mentre i clasti più piccoli si attestano nelle porzioni medio-alte dell'accumulo. L'evoluzione dei metodi d'escavazione, ha anche portato nei secoli a variazioni granulometriche dei ravaneti, dove si riconoscono porzioni formate da blocchi metrici, pezzame (decimetrico o pluridecimetrico) e detrito più fine (da centimetrico a minore di 1 cm). In alcune aree, una pezzatura può prevalere (in genere, nei ravaneti più vecchi), mentre in altre si ha un maggiore assortimento granulometrico. Osservazioni lungo sezioni stratigrafiche in vari ravaneti evidenziano il succedersi di livelli detritici differenziati per granulometria e struttura, determinati dall'evoluzione delle tecniche estrattive nel tempo. Dalla fine anni degli anni 80 ad oggi l'utilizzo del filo diamantato e delle seghe a catena, ha comportato un aumento della matrice fine negli accumuli.

Al fine di compiere l'analisi di stabilità è pertanto essenziale determinare un valore dell'angolo di attrito interno da avere come riferimento nelle scelte progettuali.

Sulla base della nomenclatura proposta da Baroni *et al.* gli elementi granulometrici dei ravaneti sono i seguenti:

- informi: blocchi con dimensioni minime superiori ai 50 cm, non utilizzabili a scopi
- commerciali per la forma irregolare;
- pezzame: clasti con dimensioni variabili dai 30 ai 50cm;
- sassi: clasti di dimensione variabile tra i 10 e 30cm;
- fine: clasti di dimensione inferiori ai 10 cm;
- terre: elementi con dimensioni dalle argille alle ghiaie.

La relativa percentuale è d'incerta definizione ed in ogni caso la distribuzione può correlarsi al periodo di costruzione del ravaneto. Si riconosce comunque che il ravaneto è un assemblaggio di particelle e clasti di varia pezzatura fino ai blocchi metrici che manifesta un comportamento variabile riconducibile tuttavia a quello di un *rockfill*, cioè di un ammasso di materiale incoerente di granulometria controllata, utilizzato per la costruzione dei paramenti delle dighe in terra, tranne evidentemente nelle zone dove le terre (vale a dire il materiale francamente granulare) prevalgono costituendo stratificazione d'importante spessore. Queste particolari situazioni locali sono escluse dall'analisi di questo rapporto.

Come riportato ampiamente nella letteratura scientifica i *rockfill* hanno risposta meccanica paragonabile a quella di un giunto in roccia.

Barton introdusse la seguente relazione empirica per la resistenza a taglio di giunti di roccia:

$$\tau_{n,f} = \sigma_{n,f} \tan[JRC \log(\frac{JCS}{\sigma_{n,f}}) + \varphi_b]$$

dove $\tau_{n,f}$ è la resistenza d'attrito di picco, $\sigma_{n,f}$ la tensione normale agente sul piano di rottura efficace, JRC il Joint Roughness Coefficient, JCS il Joint wall Compressive Strength, φ_b angolo d'attrito di base o residuo.

Il modello per la stima della resistenza al taglio proposto per un *rockfill* è concettualmente identico al modello applicato ai giunti di roccia (modello di <u>B</u>arton e <u>K</u>jaensrli, BK). I parametri che specializzano il *rockfill* nel modello sono la rugosità equivalente *R* (*effective roughness*), che sostituisce *JRC*, e la resistenza alla frantumazione dei clasti *S*, che sostituisce *JCS*. Questi sono funzione della porosità dell'accumulo e del grado di compattazione, della dimensione dei clasti, nonché della tipologia di prova (taglio piano, triassiale). In formula:

$$\tau_{n,f} = \sigma_{n,f} \tan[R \log(\frac{S}{\sigma_{n,f}}) + \varphi_b]$$

Il modello BK ha il pregio di considerare la dilatanza che un sistema compatto di blocchi sufficientemente incastrati manifesta sotto sforzo di taglio in assenza di vincoli alla variazione volumetrica in condizioni drenate. La dilatanza si traduce in un angolo d'attrito apparente più pronunciato ai livelli tensionali bassi, corrispondenti agli strati più superficiali degli accumuli. All'aumento dello stato tensionale la graduale soppressione a seguito di disgregazione degli spigoli dei clasti e delle asperità (come nei giunti) porta ad una riduzione dell'angolo d'attrito fino al valore tendenziale corrispondente a quello della polvere di marmo o a quello che si manifesta tra superfici lisce di blocchi dello stesso materiale.

Al fine di definire i parametri del criterio di rottura nel passato è stato realizzato uno studio in cui sono state eseguite una serie di prove di *tilting* e di taglio con carico variabile in sito utilizzando cassoni in lamiera di ferro di 1.5 x 3.0 x 0.5 m³ sovrapposti e riempiti con materiale riveniente dai ravaneti di vari mucchi differenti prelevati sia nella cava in oggetto che in quelle limitrofe sulla scorta dello studio originale di Barton.

Apparecchiatura utilizzata per le prove di taglio e di tilt test

Le prove effettuate riferiscono a livelli tensionali bassi e per un materiale non addensato, in accordo alla mancanza di costipamento dei clasti nello strato superficiale dei ravaneti ed alla potenzialità dei macchinari di movimentazione carico resi disponibili nei siti di cava.

La rispondenza del campione, in considerazione della sua dimensione, al comportamento del materiale negli strati superficiali del ravaneto può tuttavia considerarsi piena. Poiché i valori della tensione normale operante sul piano di rottura (sia nei tilt test che nelle prove di taglio diretto) sono modesti, i risultati si collocano (come descritto in seguito) nella parte iniziale del criterio di rottura, con tendenza sensibilmente lineare. Di conseguenza per l'interpolazione dei dati si è utilizzata una relazione di regressione lineare. Ne consegue che per tutti i mucchi per lo stato tensionale saggiato, corrispondente grossomodo a meno di 5 metri di copertura, si è introdotto in definitiva un criterio di resistenza a taglio alla Mohr-Coulomb (MC):

$$\tau_{n,f} = \sigma_{n,f} \tan \varphi + c$$

caratterizzato dai due parametri φ angolo d'attrito e c coesione. Si rimarca che i valori di coesione sono pressoché trascurabili, in accordo alla natura tipicamente incoerente dei materiali di ravaneto costituenti i mucchi saggiati.

Alla luce dei risultati conseguiti con suddette prove si può affermare che i mucchi esibiscono resistenza variabile con la profondità, riconoscendosi per la parte più superficiale un angolo d'attrito sui 50° dovuto all'effetto di interlocking con dilatanza non confinata, mentre per gli strati inferiori ai fini dell'effettuazione di analisi di stabilità si può attribuire al materiale una resistenza di 45° di angolo d'attrito φ ed una debole coesione c di 0.3 t/mq se si opera considerando la resistenza di picco $\varphi = \varphi_p$.

Ovviamente nell'analisi svolta di seguito viene completamente trascurata la coesione e verrà utilizzato come valore di angolo di attrito caratteristico $\varphi = 45^{\circ}$ per il deposito.

Verifica pendio

Il metodo di calcolo adoperato nella valutazione della stabilità è il metodo di Bishop, basato sul concetto dell'equilibrio limite globale, con superficie di scivolamento assimilabile ad un arco di circonferenza dove il livello di sicurezza può essere espresso in termini di momenti rispetto al centro della circonferenza stessa:

$$\frac{1}{\gamma_R} * M_S \\ \overline{\gamma_{G1}} * M_R$$

in cui M_R è il momento delle forze ribaltanti, M_S il momento stabilizzante calcolato utilizzando i valori caratteristi dei parametri geotecnici del terreno divisi i loro coefficienti parziali γ_M , mentre γ_R e γ_{G1} i rispettivi coefficienti parziali per le azioni e per le resistenze sopra accennati.

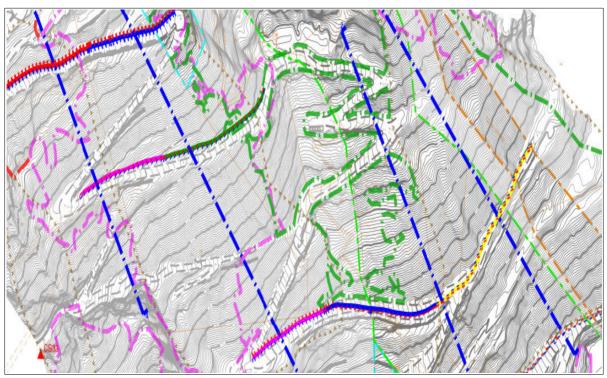
Tale metodo ha il vantaggio della semplicità in quanto, rispetto a metodi più complessi e completi quali quello di Morgesten-Price, differisce nei risultati di poche unità percentuali.

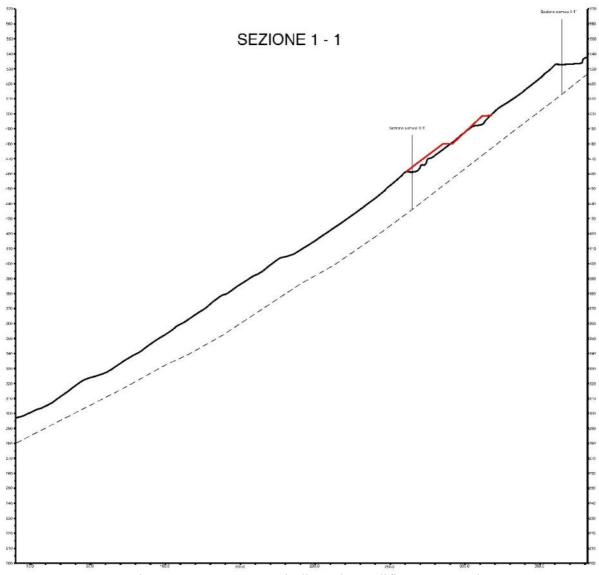
Per la ricerca della superficie occorre, prima di tutto, considerare una serie di cerchi di scorrimento aventi il medesimo centro di rotazione, ma di raggio diverso. Se si trova il fattore di sicurezza di ciascuno di questi cerchi, uno dopo l'altro, e si traccia un grafico rispetto al raggio, è probabile che a un certo punto si trovi un "fattore di sicurezza minimo".

Ciò si può ottenere semplicemente dalla forma del pendio oppure perché quel particolare cerchio di scorrimento ha intercettato un terreno debole. Se un insieme analogo di cerchi di scorrimento viene esaminato da ciascuno di una intera serie di cerchi (una griglia rettangolare è molto adatta) si può, allora, ottenere un fattore di sicurezza minimo per ogni punto: quello col fattore più basso darà il fattore di sicurezza per l'intero pendio.

Il contributo dovuto alla presenza di un battente idraulico è a parere dello scrivente di minima entità. Questa affermazione si basa su vari aspetti legati sia al tipo di materiale di cui sono costituiti i depositi, sia dal fatto che le opere di regimazione realizzate, tendono ad allontanare le acque piovane che gravano in queste aree non permettendo un notevole accumulo di acqua all'interno dei depositi stessi, inoltre la pendenza del substrato roccioso impedisce qualunque ristagno o formazione di battenti.

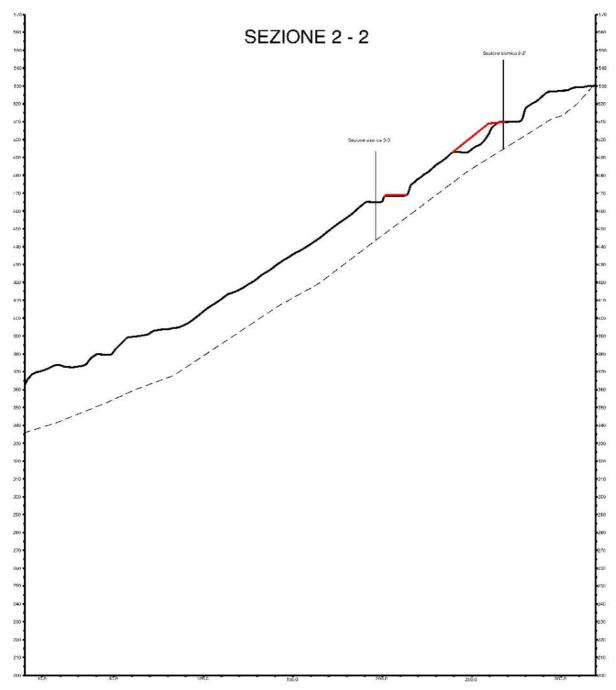
Infatti, come già detto in precedenza, la granulometria dei depositi è molto variabile il che porta a considerare questo materiale nella sua quasi totalità, ma soprattutto alle profondità dove ipoteticamente si realizza la superficie di rottura, come discretamente permeabile.


Comunque per porsi in ogni caso nella condizione peggiore, come d'altronde suggerisce il D.M. LL.PP. del 14/01/2008, si è deciso in ogni modo di considerare il contributo legato alla presenza di acqua andando a valutare la stabilità del versante impostando altresì il materiale saturo con peso specifico (γ_s =2.2t/m³).

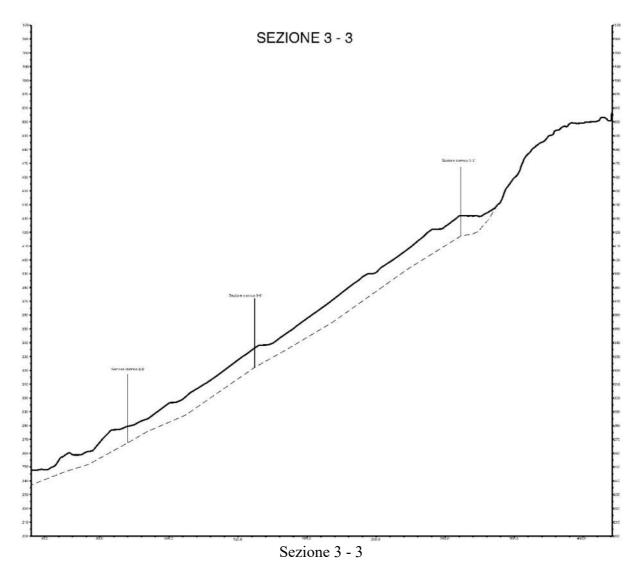

Nel seguito si riporteranno le immagini delle analisi eseguite per la sezioni rappresentative di ogni singolo ravaneto in analisi, andando a considerare la presenza sia del sisma e dell'acqua, sia del carico dei possibili mezzi che transitano nelle strade, siano esse comprensoriali e/o interne, introducendo i parametri di resistenza del materiale detritico descritti nel paragrafo dedicato. Le analisi sono state svolte sia per la configurazione attuale sia per la configurazione di progetto nel caso in cui le aree siano interessate dalle lavorazioni progettuali.

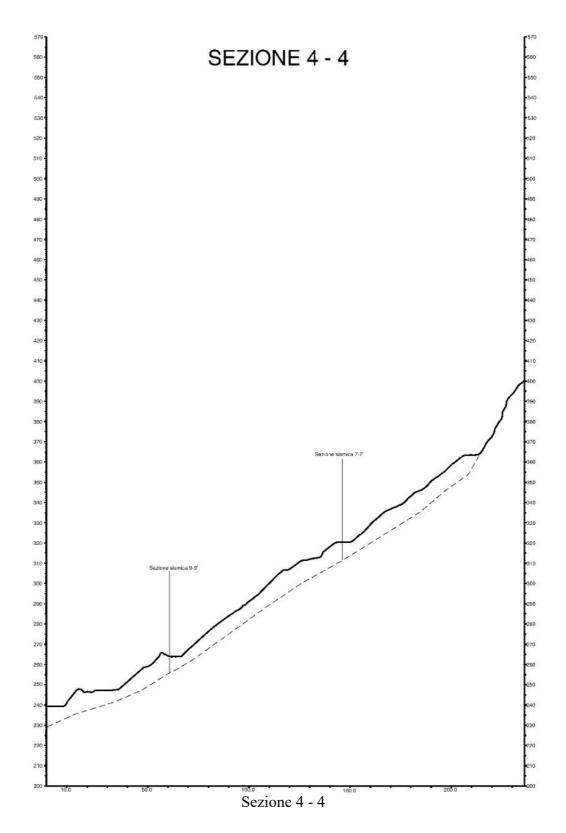
Ravaneto lato Torano

Va sottolineato come il profilo del substrato roccioso risulta essere una stima basandosi sullo studio sismico condotto nell'area dalla ditta Geognostica Apuana Snc alcuni anni or sono.



Indicazione della posizione delle sezioni di analisi lungo il ravaneto a PGME lato Torano. Sono evidenti anche le varie sezioni sismiche eseguite lungo il bordo strada .




Sezione 1-1 – In rosso è indicata la modifica progettuale

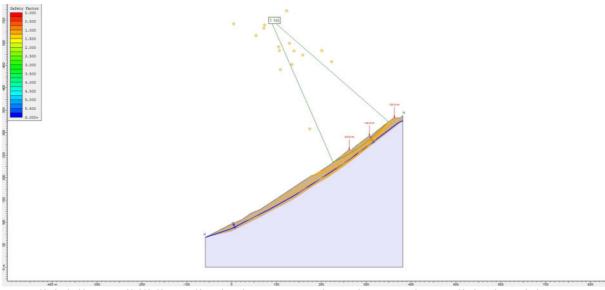
9

Sezione 2 – 2 – In rosso è indicata la modifica progettuale

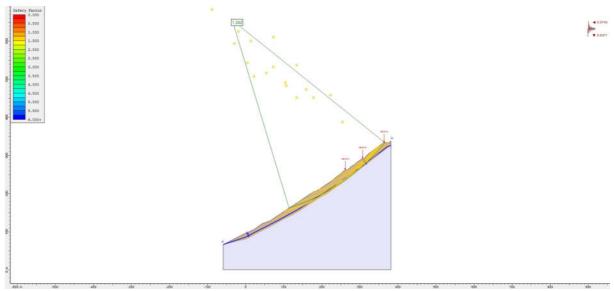
OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Ai valori del Fattore di Sicurezza riportati nelle immagini successive bisogna applicare il coefficiente parziale γ_R per cui l'effettivo livello di sicurezza valutato secondo il D.M. 14/01/2008 è pari al suddetto valore diviso per 1.1 in condizioni statiche ed 1.2 in condizioni pseudostatiche. I valori dei coefficienti sismici utilizzati nelle verifiche sono quelli evidenziati nell'Allegato I, ovvero:

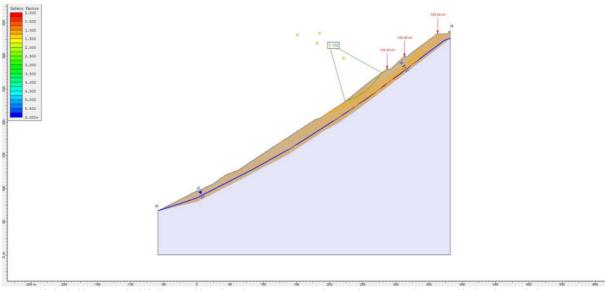
Coefficienti sismici orizzontale e verticale rispettivamente k_h=0,0743 e k_v= 0,0371

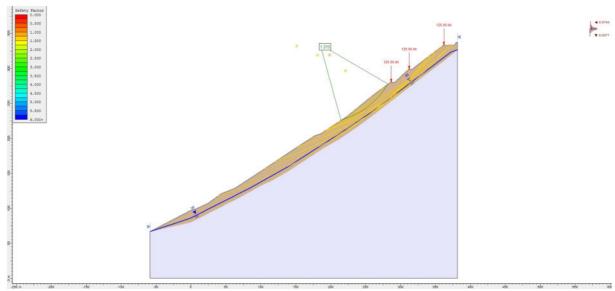

Di seguito si riportano le immagini delle analisi di stabilità eseguite con il software Slide lungo le sezioni indicate nell'estratto precedente. Per le sezioni 1-1 e 2-2 sono state eseguite le analisi anche per la fase progettuale.

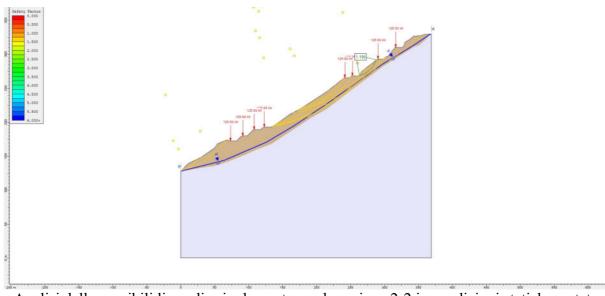
Come già detto precedentemente le analisi sono state condotte sia in condizione statiche (FS di sicurezza minimo 1.1 imposto da normativa – vedi Allegato I) che pseudostatiche (FS di sicurezza minimo 1.2 imposto da normativa – vedi Allegato I). Oltre al carico del materiale è stato considerato il carico concentrato dovuto ai mezzi di trasporto (camion) prendendo cautelativamente il contemporaneo passaggio dei camion in tutti i punti di strada attraversati dalla sezione (estremamente cautelativa).

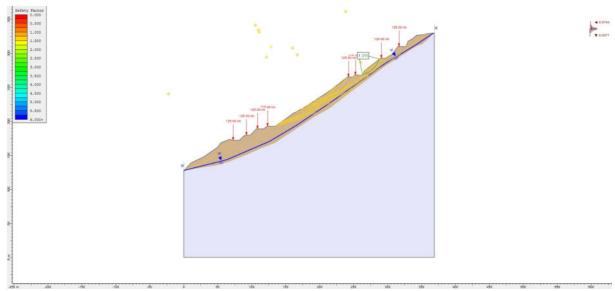

Nelle immagini di sotto sono presenti le 20 linee di scivolamento più critiche:

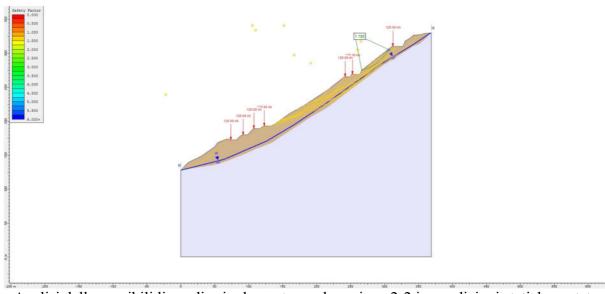
- in verde è evidenziata la linea di scivolamento più critica;
- in giallo sono evidenziate le ulteriori 19 linee di scivolamento.

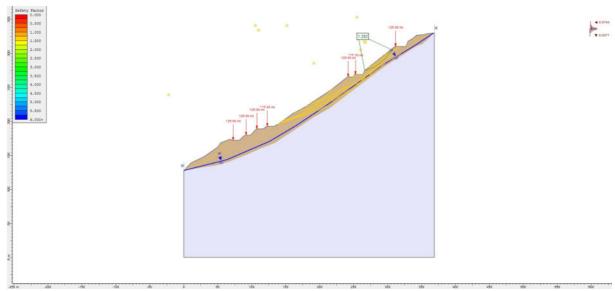

Tutte le verifiche eseguite lungo le sezioni di stabilità soddisfano il fattore di sicurezza minimo richiesto da normativa sia nelle fasi attuali che nelle fasi di progetto. Solo lungo le due sezioni 1-1 e 2-2 si eseguiranno dei lavori dove la modifica non comporta la realizzazione di bastioni o muri di sostegno diversi da quelli attuali.

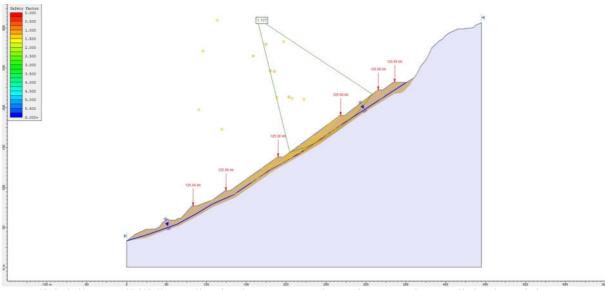

Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni statiche – stato attuale (FS=1.145).

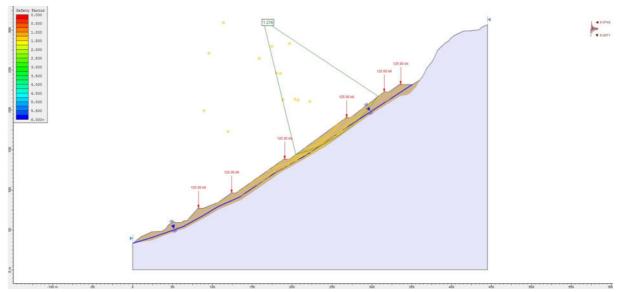

Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni dinamiche – stato attuale (FS=1.242).

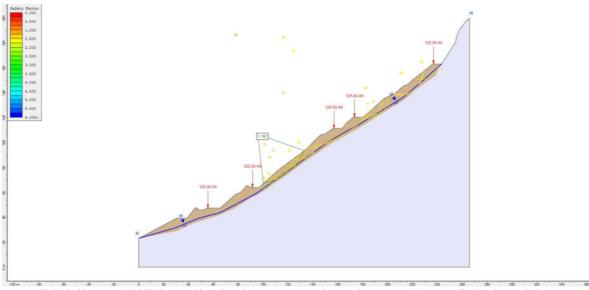

Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni statiche – stato finale di progetto (FS=1.115).

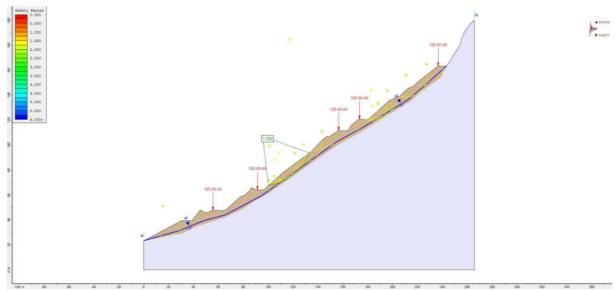

Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni dinamiche – stato finale di progetto (FS=1.215).


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni statiche – stato attuale (FS=1.190).


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni dinamiche – stato attuale (FS=1.311).

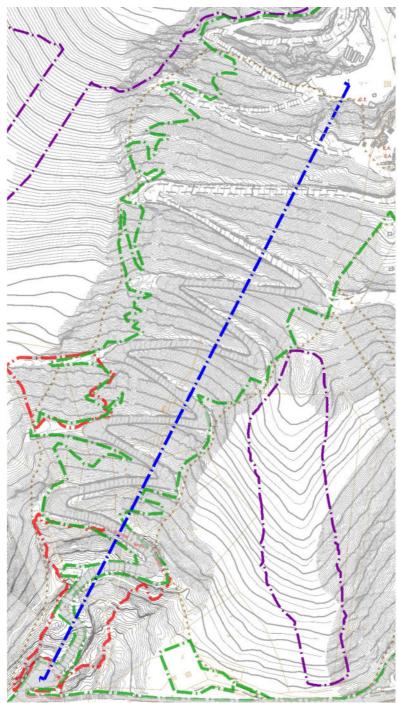

Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni statiche – stato finale di progetto (FS=1.180).


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni dinamiche – stato finale di progetto (FS=1.282).


Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni statiche – stato attuale (FS=1.177).

Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni dinamiche – stato attuale (FS=1.276).

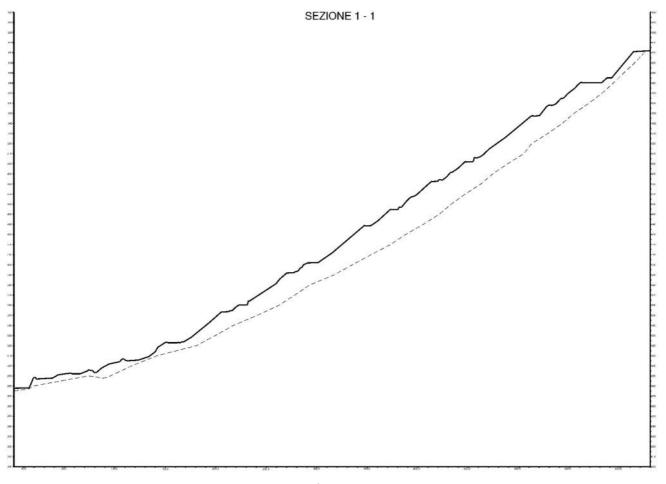
Analisi delle possibili linee di scivolamento per la sezione 4-4 in condizioni statiche – stato attuale (FS=1.167).



Analisi delle possibili linee di scivolamento per la sezione 4-4 in condizioni dinamiche – stato attuale (FS=1.282).

Ravaneto lato Miseglia (Ovest)

Va sottolineato come il profilo del substrato roccioso risulta essere una stima basandosi sul CTR quando non era ancora presente il ravaneto su cui è impostata la strada comprensoriale.



Indicazione della posizione della sezione di analisi lungo il ravaneto a PGME lato Miseglia dove oggi è situata la strada di arroccamento.

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

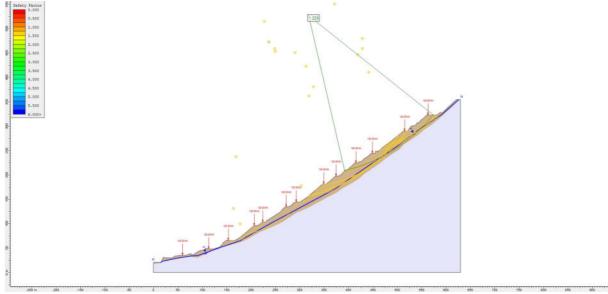
OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Sezione 1 - 1

21

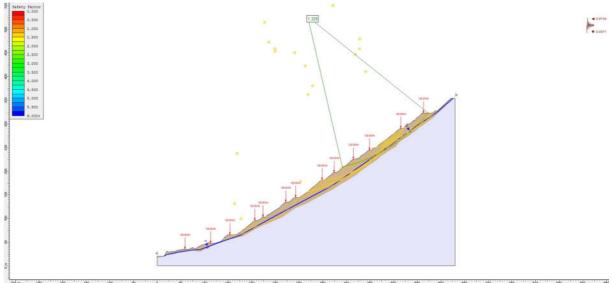
COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)


Anche in questo caso ai valori del Fattore di Sicurezza riportati nelle immagini successive bisogna applicare il coefficiente parziale γ_R per cui l'effettivo livello di sicurezza valutato secondo il D.M. 14/01/2008 è pari al suddetto valore diviso per 1.1 in condizioni statiche ed 1.2 in condizioni pseudostatiche. I valori dei coefficienti sismici utilizzati nelle verifiche sono k_h =0,0743 e k_v = 0,0371

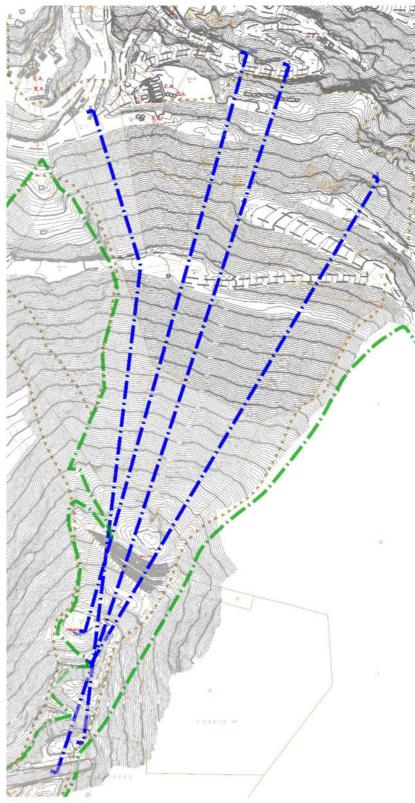
Di seguito si riportano le immagini delle analisi di stabilità eseguite con il software Slide dove, oltre al carico del materiale, è stato considerato il carico concentrato dovuto ai mezzi di trasporto (camion) prendendo cautelativamente il contemporaneo passaggio dei camion in tutti i punti di strada attraversati dalla sezione (estremamente cautelativa).

Nelle immagini di sotto sono presenti le 20 linee di scivolamento più critiche:


- in verde è evidenziata la linea di scivolamento più critica;
- in giallo sono evidenziate le ulteriori 19 linee di scivolamento.

Tutte le verifiche eseguite lungo le sezioni di stabilità soddisfano il fattore di sicurezza minimo richiesto da normativa nella fase attuale dove non si eseguirà alcun tipo di modifica.

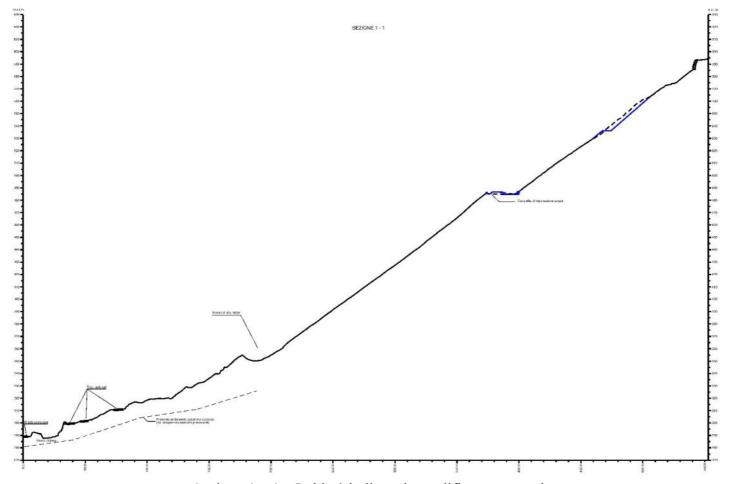
Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni statiche – stato attuale (FS=1.229).


Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni dinamiche – stato attuale (FS=1.329).

Ravaneto lato Miseglia (Est)

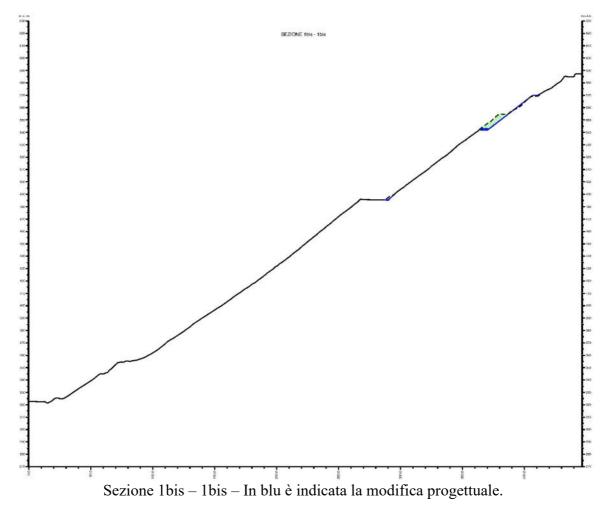
Come detto nel seguito si valuteranno le condizioni di sicurezza del deposito sia allo stato attuale che al termine delle due fasi di lavorazione rappresentate nelle tavole allegate. Negli anni sono stati eseguiti vari studi sulla stabilità del ravaneto in questione, ma dovendo ancora realizzare la parte terminale della strada di arroccamento e il completamento del piazzale di quota 484 si è proceduto ad una verifica di stabilità dell'intero deposito lungo le tre sezioni riportate nell'estratto successivo che attraversano lo stesso lungo la linea di massima pendenza.

Il substrato roccioso nella porzione inferiore è stato tracciato mediante le prospezioni eseguite in passato mentre è stato ipotizzato nella sua porzione centrale approssimando le pendenze dei due versanti rocciosi che caratterizzano la porzione sx e dx dell'area, raccordandola poi con l'ammasso roccioso della porzione superiore.



Indicazione della posizione delle sezioni di analisi lungo il ravaneto a PGME lato Miseglia situato più ad est.

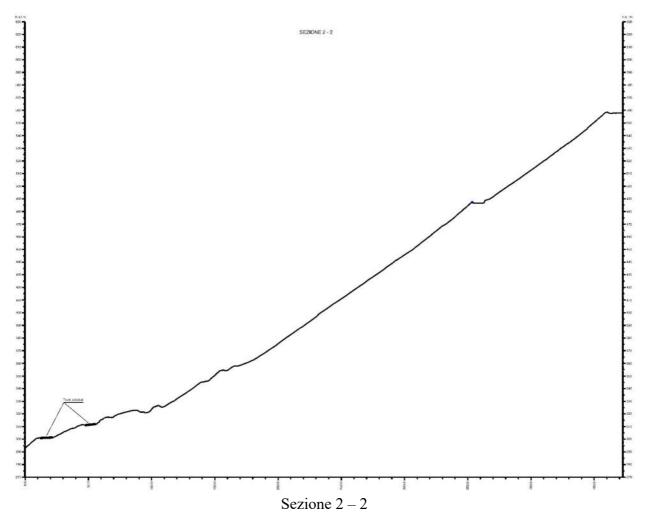
OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)


Sezione 1-1 – In blu è indicata la modifica progettuale

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

DATA: Giugno 2025

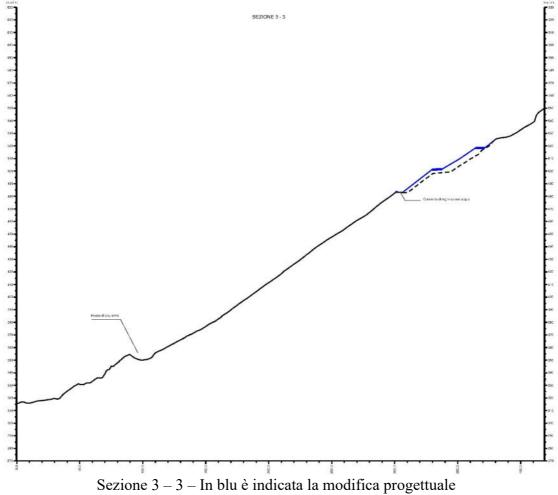
25



OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

DATA: Giugno 2025

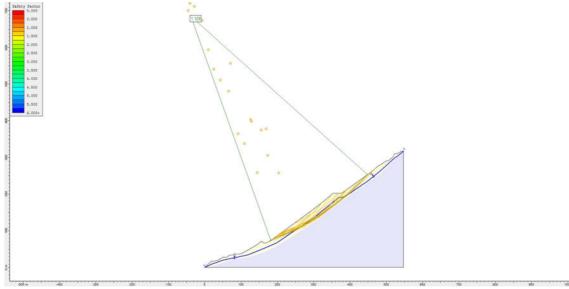
26



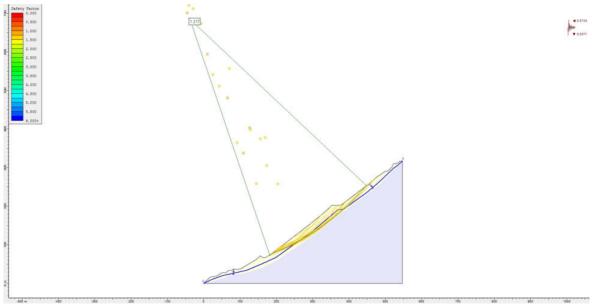
OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

DATA: Giugno 2025

_27

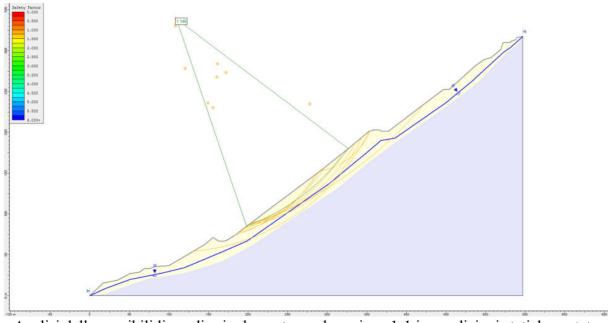

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

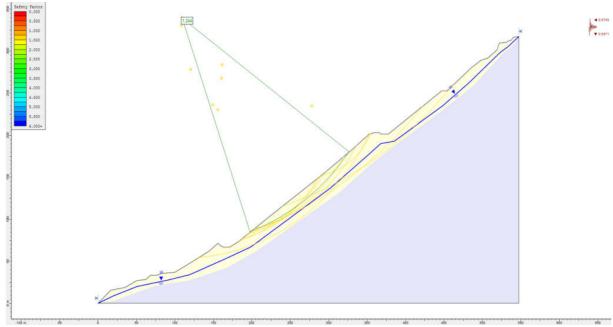
DATA: Giugno 2025 28



Come fatto in precedenza ai valori del Fattore di Sicurezza riportati nelle immagini successive bisogna applicare il coefficiente parziale γ_R per cui l'effettivo livello di sicurezza valutato secondo il D.M. 14/01/2008 è pari al suddetto valore diviso per 1.1 in condizioni statiche ed 1.2 in condizioni pseudostatiche. I valori dei coefficienti sismici utilizzati nelle verifiche sono k_h =0,0743 e k_v = 0,0371

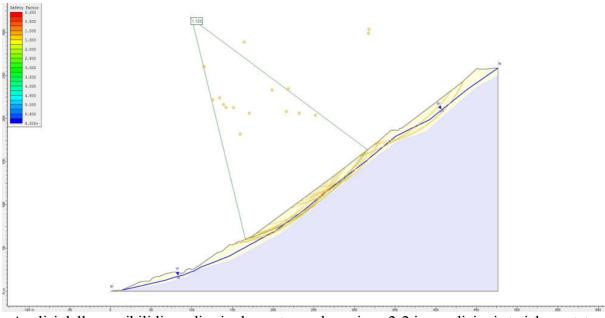
Di seguito si riportano le immagini delle analisi di stabilità eseguite con il software Slide.


Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni statiche – stato attuale (FS=1.129).

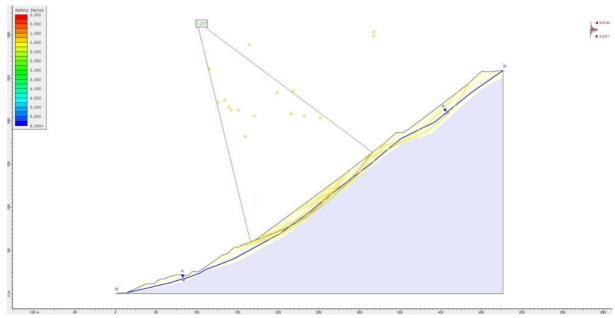

Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni dinamiche – stato attuale (FS=1.217).

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

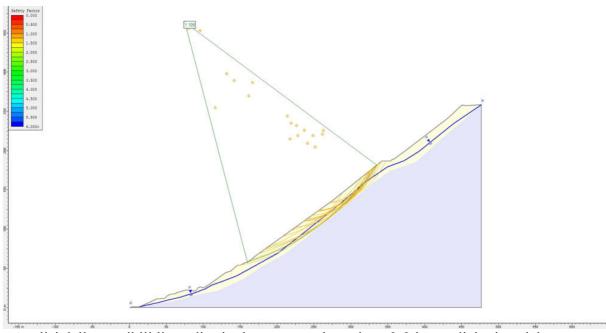


Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni statiche – stato finale (FS=1.148).

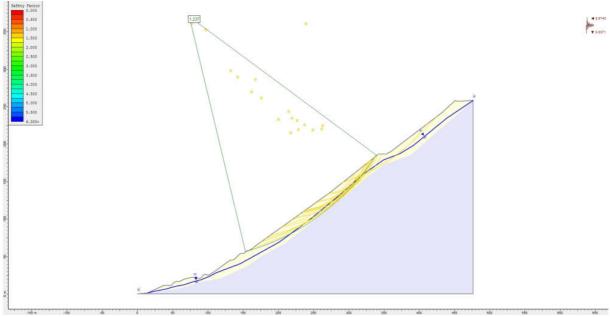


Analisi delle possibili linee di scivolamento per la sezione 1-1 in condizioni dinamiche – stato finale (FS=1.244).

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

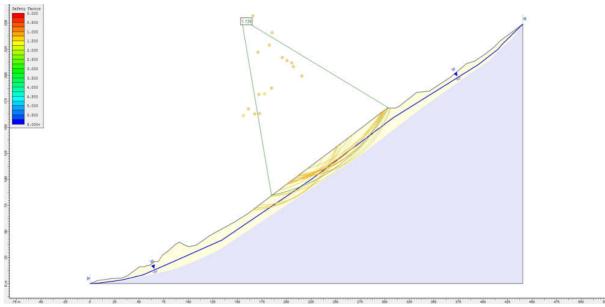


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni statiche – stato attuale (FS=1.124).

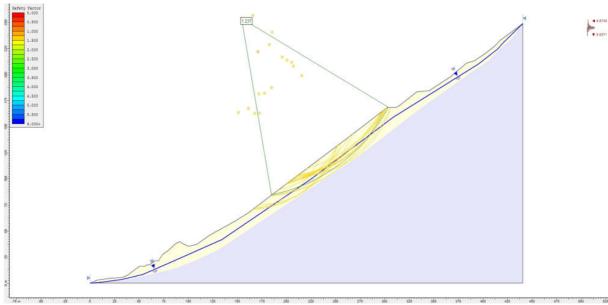


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni dinamiche – stato attuale (FS=1.217).

COMMITTENTE:

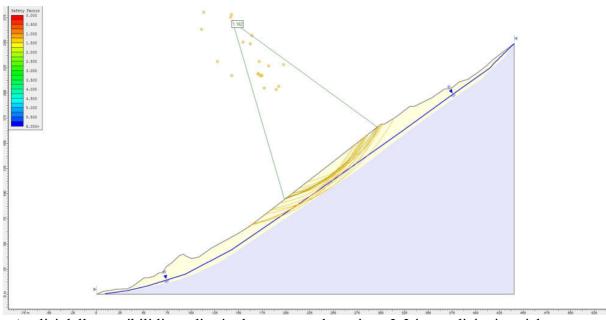


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni statiche – stato finale (FS=1.109).

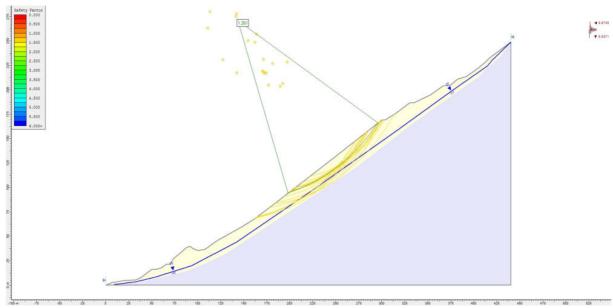


Analisi delle possibili linee di scivolamento per la sezione 2-2 in condizioni dinamiche – stato finale (FS=1.237).

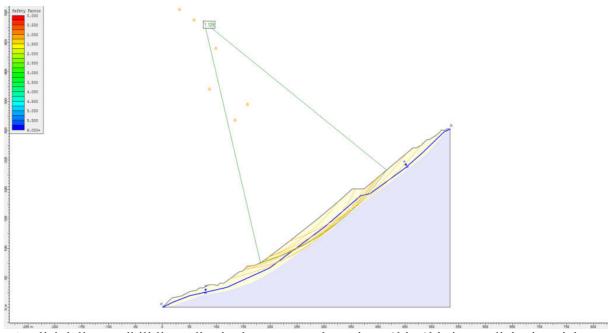
OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

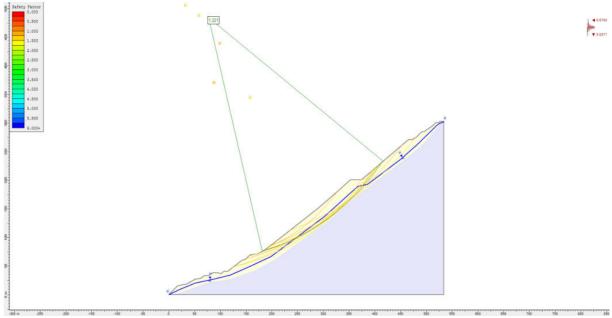


Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni statiche – stato attuale (FS=1.139).

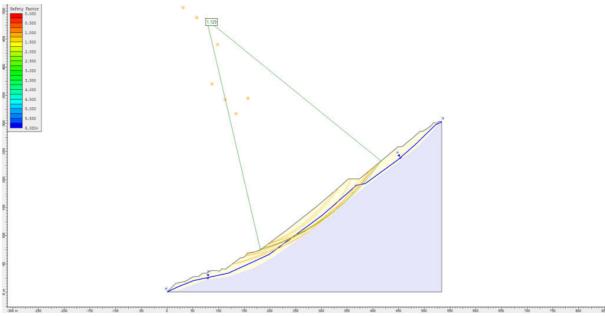


Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni dinamiche – stato attuale (FS=1.237).

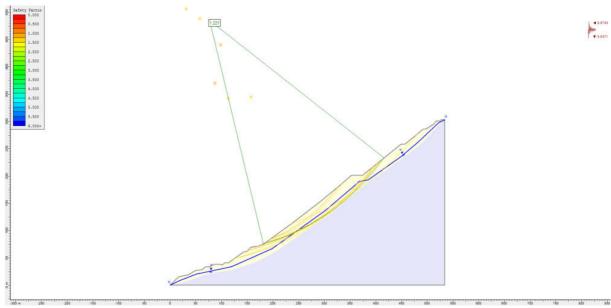

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)


Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni statiche – stato finale (FS=1.162).

Analisi delle possibili linee di scivolamento per la sezione 3-3 in condizioni dinamiche – stato finale (FS=1.261).



Analisi delle possibili linee di scivolamento per la sezione 1bis-1bis in condizioni statiche – stato attuale (FS=1.129).



Analisi delle possibili linee di scivolamento per la sezione 1bis-1bis in condizioni dinamiche – stato attuale (FS=1.221).

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Analisi delle possibili linee di scivolamento per la sezione 1bis-1bis in condizioni statiche – stato finale (FS=1.129).

Analisi delle possibili linee di scivolamento per la sezione 1bis-1bis in condizioni dinamiche – stato finale (FS=1.221).

Conclusioni

Tutte le sezioni di stabilità eseguite lungo i tre ravaneti individuati come PGME soddisfano il fattore di sicurezza minimo richiesto da normativa (NTC 2018) sia nelle fasi attuali che nelle fasi di progetto. Nelle lavorazioni progettuali, da eseguirsi lungo alcune delle sezioni individuate sopra, non verranno eseguiti bastioni o muri di sostegno diversi da quelli attuali per la stabilità del ravaneto oggetto di modifica.

In linea generale le modifiche apportate nel progetto, se pur limitate, porteranno ad un miglioramento della stabilità globale dei ravaneti in quanto verrà parzialmente rimosso e asportato del materiale alla testa e conseguentemente verrà diminuito del peso che rappresenta il fattore maggiormente instabilizzante del pendio.

In conclusione sia allo stato attuale che al termine delle lavorazioni di progetto previste, si garantisce un soddisfacente livello di sicurezza per quanto riguarda la stabilità dei ravaneti analizzati.

Carrara, Giugno 2025

Il Tecnico

Dott. Ing. Massimo Gardenato

Allegato I

Normativa Tecnica Progettazione Geotecnica e Progettazione Sismica

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Normativa - Generalità

Per la verifica della sicurezza dell'opera da realizzarsi ci si rifà a quanto riportato nel Decreto del Ministero delle Infrastrutture e dei Trasporti del 17/01/2018 e successiva circolare del 29/0/2019 di cui di seguito si dà una breve e sintetica descrizione. Le indicazioni nelle suddette norme stabiliscono che la sicurezza e le prestazioni di un'opera devono essere valutate in relazione agli stati limite che si possono verificare durante la loro vita nominale. In particolare le opere e le tipologie di intervento devono possedere il requisito di:

- sicurezza nei confronti di stati limite ultimi (SLU), vale a dire: capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone ovvero comportare la perdita di beni, ovvero provocare gravi danni ambientali e sociali, ovvero mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE), vale a dire: capacità di garantire le prestazioni previste per le condizioni di esercizio.

Per le verifiche di sicurezza relative agli stati limite ultimi (SLU) deve essere rispettata la condizione $E_d < R_d$ dove:

R_d è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;

$$R_d = \frac{1}{\mathcal{Y}_R} \cdot R \left[\gamma_F F_K; \frac{X_k}{\mathcal{Y}_M}; a_d \right]$$

E_d è il valore di progetto dell'effetto delle azioni, valutato in base ai valori di progetto

$$E_d = \gamma_E \cdot E \left[F_K; \frac{X_k}{\gamma_M}; a_d \right]$$

delle azioni.

La verifica della suddetta condizione deve essere effettuata impiegando diversi coefficienti parziali, definiti sia per le azioni, sia per i parametri geotecnici e sia per le resistenze.

Progettazione geotecnica

Le verifiche agli stati limite devono essere eseguite per tutte le più gravose condizioni di carico che possono agire sulla struttura. Nelle verifiche agli stati limite ultimi si distinguono:

- lo stato limite di equilibrio come corpo rigido:

EQU

- lo stato limite di resistenza della struttura compresi gli elementi di fondazione:

STR

- lo stato limite di resistenza del terreno:

GEO

Per effettuare la verifica è necessario fare la distinzione fra i parametri caratteristici ed i valori di calcolo (o di progetto) sia delle azioni che delle resistenze in quanto i valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali y. Per le verifiche nei confronti dello stato limite ultimo di equilibrio come corpo rigido (EQU) si utilizzano i coefficienti γ riportati nella colonna EQU della Tabella successiva, mentre per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, le verifiche nei confronti degli stati limite ultimi strutturali (STR) si eseguono adottando i coefficienti y riportati nella colonna A1 della medesima Tabella. Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi. Nell'Approccio 1 sono previste due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni γf, per la resistenza dei materiali eventualmente, per la resistenza globale del sistema yr. la prima combinazione è generalmente la più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno (coefficienti A1 della tabella successiva), mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico (coefficienti A1 della tabella successiva). Nell'Approccio 2 si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le azioni γ_f , per la resistenza dei materiali γ_m e, eventualmente, per la resistenza globale γR. In tale approccio, per le azioni si impiegano i coefficienti γ_m riportati nella colonna A1, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

40

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto	γfoγe	EQU	AI	A2
Permanenti	Favorevole	$\gamma_{ m Gfav}$	0,90	1,00	1,00
Permanenti	Sfavorevole	γ_{Gsfav}	1,10	1,30	1,00
Variabili	Favorevole	$\gamma_{ m Qfav}$	0,00	0,00	0,00
Variabili	Sfavorevole	γQsfav	1,50	1,50	1,30

In accordo a quanto stabilito in precedenza la verifica della condizione $E_d < R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1, A2), per i parametri geotecnici (M1, M2) e per le resistenze (R1, R2 e R3).

Per il valore di progetto della resistenza R_d la Norma afferma che può essere determinato:

- 1. in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale γM e tenendo conto, ove necessario, dei coefficienti parziali γR relativi a ciascun tipo di opera;
- 2. in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γR relativi a ciascun tipo di opera;
- 3. sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ R relativi a ciascun tipo di opera;

dove i coefficienti da utilizzare nelle verifiche nei confronti degli stati limite ultimi sono:

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	$\gamma_{ m m}$	M1	M2
Tangente dell'angolo di attrito	$\gamma_{ an\phi'}$	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	$\gamma_{ m cu}$	1,00	1,40
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Nel seguito si elenca la simbologia adottata nelle tabelle precedenti e la grandezza a cui si riferisce:

Simbologia adottata

 $\begin{array}{ll} \gamma_{Gsfav} \\ \gamma_{Gfav} \\ \gamma_{Gfav} \\ \gamma_{Qsfav} \\ \gamma_{Qsfav} \\ \gamma_{Qsfav} \\ \gamma_{Qsfav} \\ \gamma_{Qfav} \\ \gamma_{Qfav} \\ \gamma_{Cfav} \\ \gamma_{Cfav}$

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Per quanto riguarda i coefficienti γ_R , che agiscono direttamente sulla Resistenza del sistema, questi variano in funzione dell'opera che si realizza. Nel seguito si descriveranno brevemente le verifiche agli SLU che debbono essere eseguire sulle opere di sostegno quali muri, sulle opere in sotterraneo, sulle opere di materiali sciolti e fronti di scavo e infine sui depositi di inerti . Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Opere di materiali sciolti, fronti di scavo e depositi di inerti

Le presenti norme si applicano ai manufatti di materiali sciolti, quali rilevati, argini di difesa per fiumi, canali e litorali, rinfianchi, rinterri, terrapieni e colmate, scavi per la formazione di piazzali e/o trincee e allo stesso modo ai depositi di inerti a cui si può far riferimento nel caso dei "ravaneti". Nelle verifiche che interessano il corpo del deposito, si devono attribuire parametri che tengano conto della natura e delle modalità di compattazione del materiale nonché dei risultati di specifiche prove in sito o di laboratorio. In questo caso le verifiche agli stati limite ultimi devono essere eseguite secondo la Combinazione 2 dell'Approccio 1 (dunque la combinazione di coefficienti A2-M2-R2) con il valori del coefficienti γκ pari a 1,1.

Progettazione sismica

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se_(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R. Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_g = accelerazione orizzontale massima al sito

F_o = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

T_c= periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Per il generico sito in esame la stima dei parametri spettrali necessari per la definizione dell'azione sismica di progetto viene infatti effettuata utilizzando le informazioni disponibili nel reticolo di riferimento (riportato nella Tabella 1 dell'Allegato B del D.M.).

Le forme spettrali previste dalle Norme Tecniche per le Costruzioni sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- \triangleright la vita di riferimento V_R della costruzione.
- \triangleright le probabilità di superamento nella vita di riferimento P_{VR} associate a ciascuno degli statti limite considerati,

per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

Come detto le azioni sismiche vengono valutate su ciascuna costruzione in relazione ad un periodo di riferimento V_R che si ricava moltiplicando la vita nominale V_N dell'opera per il coefficiente d'uso C_U :

$$V_R = V_N * C_U$$

La vita nominale di un'opera strutturale V_N è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

	TIPI DI COSTRUZIONE	$oldsymbol{V_N}$ (in anni)
1	Costruzioni temporanee e provvisorie	≤10
2	Costruzioni con livelli di prestazioni ordinari	≥ 50
3	Costruzioni con livelli di prestazioni elevati	≥ 100

Le verifiche sismiche di opere di tipo 1 o in fase di costruzione possono omettersi quando il progetto preveda che tale condizione permanga per meno di 2 anni.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato nella seguente tabella:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

L'individuazione delle azioni sismiche deve essere possibile per tutte le vite di riferimento e tutti gli stati limite considerati dalle NTC; a tal fine è conveniente utilizzare, come paramento caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente

$$T_R = -\frac{V_R}{\ln\left(1 - P_{V_R}\right)}$$

esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

Il valore di P_{VR} varia in funzione degli stati limite, quali Stato Limite di Operatività (SLO) e Stato Limite di Danno (SLD) per quanto riguarda gli stati limite di esercizio; Stato Limite di salvaguardia della Vita (SLV) e Stato Limite di prevenzione del Collasso (SLC) per quanto riguarda gli stati limite ultimi, i quali devono essere individuati riferendosi alle prestazioni della costruzione nel suo complesso. In mancanza di espresse indicazioni in merito, il rispetto dei vari stati limite si considera conseguito nei confronti di tutti gli stati limite ultimi qualora siano rispettate le indicazioni progettuali e costruttive e siano soddisfatte le verifiche relative al solo SLV.

Lo SLV sta ad indicare che a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

Le probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportate nella tabella successiva.

Stati Limite		PVR : Probabilità di superamento nel periodo di riferimento $\mathbf{V_R}$
Stati limite di esercizio	SLO	81%
Stati fiffite di esercizio	SLD	63%
Stati limite ultimi	SLV	10%
	SLC	5%

45

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

Qualora la attuale pericolosità sismica su reticolo di riferimento non contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{VR} fissate, il valore del generico parametro p (a_g , F_0 , T_C^*) ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai T_R previsti nella pericolosità sismica, utilizzando la seguente espressione:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) * \log\left(\frac{T_R}{T_{R1}}\right) * \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

nella quale:

p è il valore del parametro di interesse corrispondente al periodo di ritorno T_R desiderato T_{R1} , T_{R2} sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori p_1 p_2 del generico parametro p

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale del sito in esame. In assenza di analisi più dettagliate si può fare riferimento a un approccio semplificato che si basa sull'individuazione di categorie di sottosuolo di riferimento come mostrato dalla seguente tabella:

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da velocità delle onde do taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Nello spettro di risposta di progetto le caratteristiche di sito sono introdotte tramite un coefficiente S che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la seguente relazione:

$$S = S_S \times S_T$$

dove S_S è il coefficiente di amplificazione stratigrafica e S_T è il coefficiente di amplificazione topografica. Il coefficiente S_S si può ricavare dalla seguente tabella che lo lega alla categoria

46

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

di sottosuolo di riferimento.

Categoria di sottosuolo	S_{s}
A	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot a_g/g \le 1,20$
С	$1,00 \le 1,70 - 0,60 \bullet F_0 \bullet a_g/g \le 1,50$
D	$0.90 \le 2.40 - 1.50 \cdot F_0 \cdot a_g/g \le 1.80$
Е	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot a_g/g \le 1,60$

Tabella 3.2.IV

Relativamente al coefficiente di amplificazione topografica S_T , si può fare riferimento alla seguente tabella dove sono indicate le varie caratteristiche della superficie topografica che possono generare amplificazione sismica.

Categoria topografica	Caratteristiche della superficie topografica	$\begin{array}{c} \textbf{Coefficiente topografico} \\ \textbf{S}_{\text{T}} \end{array}$
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione	1,0
	media i ≤15°	
T2	Pendii con inclinazione media i>15°	1,2
Т3	Rilievi con larghezza in cresta molto minore che alla base e	1,2
	inclinazione media 15°≤ i ≤30°	
T4	Rilievi con larghezza in cresta molto minore che alla base e	1,4
	inclinazione media i>30°	

Tabella 3.2.III

Nel § 7.11 si disciplinano la progettazione e la verifica delle opere e dei sistemi geotecnici quali stabilità dei pendii, fronti di scavo e rilevati, opere di sostegno soggetti ad azioni sismiche, nonché i requisiti che devono essere soddisfatti dai siti di costruzione e dai terreni interagenti con le opere in presenza di tali azioni. In aggiunta alle prescrizioni contenute nel paragrafo citato, le opere e i sistemi geotecnici devono soddisfare le prescrizioni contenute nel capitolo 6 delle norme, relative alle combinazioni di carico non sismico.

Sotto l'effetto dell'azione sismica di progetto le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio. Le verifiche agli stati limite ultimi di opere e sistemi geotecnici si riferiscono al solo stato limite di salvaguardia della vita (*SLV*) mentre quelle agli stati limite di esercizio si riferiscono al solo stato limite di danno (*SLD*).

Le verifiche degli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto, con i coefficienti parziali γ_R indicati nel capitolo 7, oppure con i γ_R indicati nel capitolo 6 laddove non espressamente specificato.

47

COMMITTENTE: FB Cave s.r.l., Bettogli Marmi s.r.l., Società Apuana Marmi s.r.l. e VF Marmi s.r.l.

OGGETTO: Relazione stabilità ravaneti (Art.32-PABE)

L'analisi di stabilità in condizioni sismiche può essere eseguita mediante metodi pseudostatici. In questi metodi l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso (W) del volume potenzialmente instabile. Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza. Le componenti orizzontale e verticale di tale forza possono esprimersi come:

$$F_{_h} = k_{_h} \times W$$

$$F_{_{_V}} = k_{_{_V}} \times W$$

con k_h e k_v rispettivamente pari ai coefficienti sismici orizzontale e verticale:

$$k_h = \beta_s \cdot \frac{a_{\max}}{g}$$

$$k_v = \pm 0.5 \times k_h$$

dove β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito a_{max} = accelerazione orizzontale massima attesa al sito g = accelerazione di gravità

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima attesa al sito può essere valutata con la relazione

$$a_{\max} = S \times a_g = S_s \times S_T \times a_g$$

Il valore del coefficiente β_s è indicato nei vari paragrafi del capitolo 7 in funzione dell'opera che si realizza.

Opere di materiali sciolti, fronti di scavo e depositi di inerti

Per quanto riguarda le presenti opere il valore del coefficiente β_s assume i valori:

 $\beta_s = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 $\beta_s = 0.47$ nelle verifiche allo stato limite di esercizio (*SLD*).

Nelle verifiche di sicurezza delle presenti opere si deve controllare che la resistenza del sistema sia maggiore delle azioni ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a $\gamma_R = 1.2$.

48