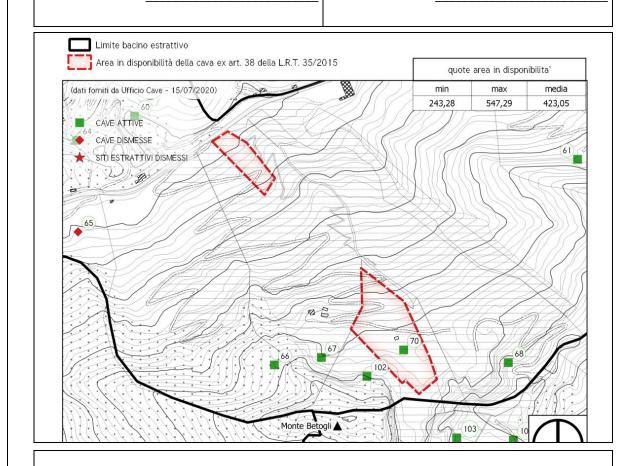
- COMUNE DI CARRARA -


"Studio Idrogeologico" ai sensi dell'art.27, comma 7 delle "NORME TECNICHE DI ATTUAZIONE DEI PIANI ATTUATIVI DEI BACINI ESTRATTIVI DELLE ALPI APUANE", predisposte dal Comune di Carrara nel maggio 2019.

Piano di coltivazione coordinato della cava "Bettogli A n.70".

Committente: "VF MARMI S.R.L."

I TECNICI INCARICATI:

Dott. Geol. Carlo Alberto Turba Via Tinelli n.25/A 54100 Massa Dott.ssa Geol. Ilaria Salvatori

Relazione idrogeologica

INDICE

1 - PREMESSA2
2 - RELAZIONE IDROGEOLOGICA5
2.1 Caratteri geologici ed idrogeologici5
3 - PRINCIPALI STUDI ESEGUITI NELL'AREA IN ESAME13
3.1 STUDIO IDROGEOLOGICO PROTOTIPALE DEL CORPO IDRICO
SIGNIFICATIVO DELL'ACQUIFERO CARBONATICO DELLE ALPI APUANE,
MONTI D'OLTRE SERCHIO E S.MARIA DEL GIUDICE13
3.2 STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI
CARSICHE SITUATE NEL COMUNE DI CARRARA26
4 - CONFRONTO FRA I VALORI DI TORBIDITA' E LE PRECIPITAZIONI
REGISTRATE ALLE STAZIONI DI TORANO E GRAGNANA30
4.1 ATTENDIBILITA' DATI PLUVIOMETRICI30
4.2 CONCENTRAZIONE DI TORBIDITA' MASSIMA AMMISSIBILE31
5 - VALUTAZIONE DEGLI IMPATTI SULLE RISORSE IDRICHE SOTTERRANEE . 50
5.1 "STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI
CARSICHE SITUATE NEL COMUNE DI CARRARA"50
5.2 "STUDIO IDROGEOLOGICO PROTOTIPALE DEL CORPO IDRICO
SIGNIFICATIVO DELL'ACQUIFERO CARBONATICO DELLE ALPI APUANE" 51

1 - PREMESSA

Per incarico della "VF MARMI S.R.L.", concessionaria della cava denominata "Bettogli A n.70", che ha la disponibilità delle aree evidenziate nella seguente Fig.n.1.1, è stato redatto il presente "Studio Idrogeologico" per ottemperare a quanto previsto all'art.27, comma 7, delle "NORME TECNICHE DI ATTUAZIONE DEI PIANI ATTUATIVI DEI BACINI ESTRATTIVI DELLE ALPI APUANE", predisposte dal Comune di Carrara nel maggio 2019, di seguito riportato.

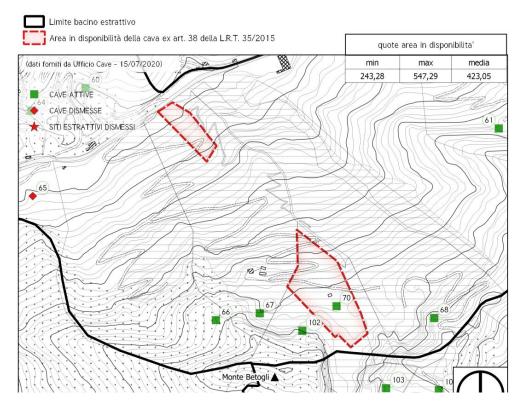
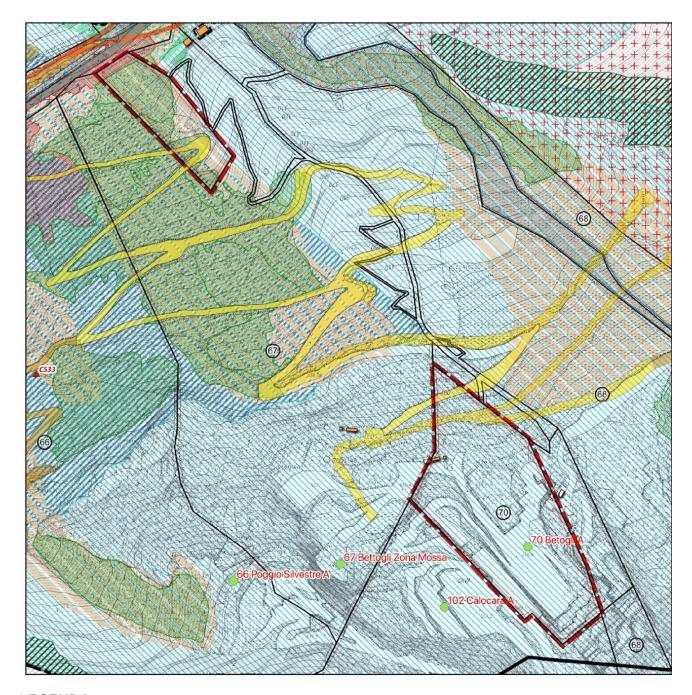


Fig.1.1 – Aree in disponibilità della cava Bettogli A n.70.


Art. 27 Aree di tutela delle sorgenti e dei pozzi captati per uso idropotabile

1. Il presente Piano, al fine di salvaguardare le sorgenti e i pozzi captati per scopi idropotabili, identifica zone nelle quali valgono le seguenti specifiche norme di tutela.

....

- 4. Nelle aree individuate con la sigla A3 nelle Tavole del Q.P., definite a vulnerabilità medio-elevata, le nuove autorizzazioni dovranno adottare esclusivamente modalità di taglio a secco oppure modalità alternative di taglio che prevedano l'utilizzo di modeste quantità di acqua e liquidi in genere. Le modalità alternative di taglio dovranno essere valutate ed approvate dalle autorità competenti al momento del rilascio dell'autorizzazione (congiuntamente ad ARPAT e Azienda USL) e saranno sottoposte ad una fase sperimentale della durata di almeno un anno che ne dimostri l'efficacia.
- 5. In dette aree A3 possono essere individuate aree per la riquadratura dei blocchi, perfettamente impermeabilizzate e stabilmente "cordolate", nelle quali è possibile l'utilizzo di acqua mediante un impianto a ciclo chiuso.

- 6. Le imprese esercenti attività estrattive già autorizzate ricadenti nelle aree A3 devono adeguarsi alle prescrizioni sulle modalità di taglio di cui al precedente comma 4 entro cinque anni dall' entrata in vigore del PABE e sono tenute ad adottare le soluzioni previste dal successivo art. 28 entro un anno dall'entrata in vigore del PABE.
- 7. Nelle aree individuate con la sigla A4 nelle Tavole del Q.P. definite a vulnerabilità media, le imprese esercenti attività estrattive già autorizzate dovranno, entro un anno dall'entrata in vigore del presente piano:
- adottare le soluzioni previste dal successivo art. 29;
- <u>- presentare un</u> dettagliato studio idrogeologico atto a verificare la compatibilità delle tecniche di taglio utilizzate con la tutela delle sorgenti captate per scopi idropotabili.

LEGENDA

Tutela delle sorgenti e dei pozzi idrop.

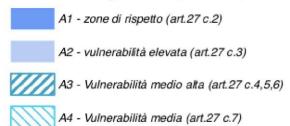


Fig. 1.2 - Stralcio "F1.4 "Disciplina dei suoli, delle attività estrattive e degli insediamenti" – Scheda n.10 – Bacini di Carrara: Torano-Miseglia-Colonnata, allegato a "Piani Attuativi dei Bacini Estrattivi delle Alpi Apuane"

2 - RELAZIONE IDROGEOLOGICA

2.1 Caratteri geologici ed idrogeologici

La cava, denominata "Bettogli A" n.70, è posta all'interno del Comparto Marmifero di Torano-Miseglia, nel Comune di Carrara, in località Bettogli.

Il sistema idrogeologico di Carrara (sezioni CTR 249060 e 249100 della Regione Toscana) corrisponde in gran parte al bacino idrografico del Torrente Carrione, ha un'area di alimentazione che si estende per circa 20 Kmg e le emergenze sono concentrate prevalentemente nell'area di Torano e nei pressi di Miseglia.

Il sistema è impostato prevalentemente sui Grezzoni, i Marmi s.l. ed i Calcari selciferi della sinclinale di Carrara.

Una soglia di permeabilità, definita dai complessi a bassa permeabilità dell'Unità di Massa, limita il sistema a Sud e crea le condizioni per la presenza delle sorgenti del gruppo di Torano e delle Canalie.

In realtà, sulla base delle condizioni idrostrutturali locali, sono classificabili come sorgenti di sbarramento solamente quelle delle Canalie, in quanto in questa zona i termini a bassa permeabilità sono presenti in affioramento e le acque emergono in corrispondenza del loro contatto con i Grezzoni (Fig. 2.1A).

Nel settore Torano, invece, l'Unità di Massa non affiora, in quanto risulta laminata nel sottosuolo, lasciando a diretto contatto due unità idrogeologiche permeabili (Grezzoni e Calcare cavernoso); in questo caso si tratta quindi di sorgenti di emergenza, sebbene la venuta a giorno delle acque è senza dubbio favorita dalla riduzione della sezione di deflusso sotterraneo per la presenza dell'Unità di Massa nel sottosuolo (Fig. 2.1B).

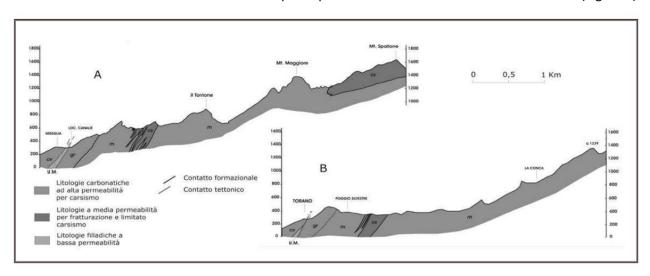


Fig.2.1 – Sezioni idrogeologiche e condizioni d'emergenza nelle loc. Canalie (A) e Torano (B) – da "Studio idrogeologico e idrogeochimico dei sistemi acquiferi carbonatici nel bacino del Torrente Carrione (Alpi Apuane nord-occidentali), M. Doveri"

Studi idrogeologici di dettaglio, di carattere idrostrutturale e idrochimico-isotopico (Doveri, 2005) e prove effettuate con traccianti naturali (Baldi, 2004), hanno permesso di suddividere il sistema idrogeologico di Carrara in quattro sotto-sistemi:

- il sotto-sistema Carbonera-Tana dei Tufi, la cui area di alimentazione comprende pressoché tutto il bacino del Canale Porcinacchia; i punti di recapito sono costituiti dalle sorgenti Carbonera, Q_{media}=50 l/s, e Tana dei Tufi, Q_{media}=60 l/s;
- il sotto-sistema Gorgoglio-Pizzutello, la cui area di alimentazione si estende nel bacino del Canale La Piastra; le cui principali emergenze sono definite dalle sorgenti Gorgoglio (Q_{media}=40 l/s), Pizzutello

 $(Q_{media}=30 \text{ I/s})$ e Sponda 2 $(Q_{media}=45 \text{ I/s})$; non si escludono zone di trasferimento da questo verso l'acquifero alluvionale;

- il sotto-sistema delle Canalie, drenato dalle due sorgenti Ratto Superiore (inserita nella rete di monitoraggio ARPAT, codice MAT-S034) e Ratto Inferiore (Q_{media}=180 l/s per entrambe le sorgenti) e dalle sorgenti Pero Inferiore (Q_{media}=40 l/s), Polla della Martana (Q_{media}=40 l/s), Ospedale Superiore (Q_{media}=10 l/s) e Ravenna (Q_{media}=10 l/s);
- il sotto-sistema Pero Superiore, il cui recapito è costituito dalla sorgente Pero Superiore.

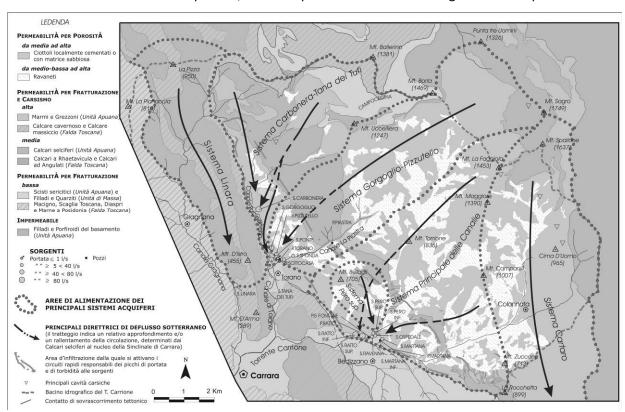


Fig. 2.2 – Schema di circolazione dei principali sistemi acquiferi del bacino del T.Carrione.

Quasi tutte le sorgenti del sistema idrogeologico sono captate per scopi idropotabili e sono dotate di strumentazione per la misurazione delle sole portate immesse nella rete di distribuzione, conseguentemente non sono note le portate relative ai picchi di piena (Piccini in AA.VV., 2002a; Doveri, 2005).

Il limite settentrionale dell'area di alimentazione con il sistema delle sorgenti di Tenerano e quello occidentale, con il sistema della sorgente del Cartaro (cui è associato il sistema di Colonnata), è definito sulla base di considerazioni idrostrutturali e idrochimiche-isotopiche (Doveri, 2005).

Le cavità carsiche presenti nel bacino del Torrente Carrione sono poste a notevole distanza dall'area estrattiva della cava n.68, e presentano tutte dislivelli contenuti.

Tra le più importanti della zona ricordiamo l'Abisso Paperoga (T/MS 1465,-100 m), l'Antro del Sagro (T/MS 284, -55 m) e il Tanone di Torano (T/MS 179, -36 m); quest'ultimo è una delle prime cavità carsiche esplorate nelle Alpi Apuane e già citato da L. Spallanzani nel 1789 (Amorfini in AA.VV., 2002a).

Anche la "Carta delle grotte e delle sorgenti delle Alpi Apuane" (Gruppo Nazionale per la difesa delle catastrofi idrogeologiche, scala 1:25.000) conferma l'assenza, in corrispondenza dell'area in cui è ubicata la cava in oggetto, e in un suo significativo intorno, di cavità naturali che possano essere potenzialmente interessate dalle lavorazioni di cava (vedi Fig.2.3).

Quanto detto è confermato anche dallo stralcio della cartografia "SITA: Grotte e Carsismo" così come consultabile nel sito GEOSCOPIO della Regione Toscana, all'indirizzo web:

ww502.regione.toscana.it/geoscopio/grotte_e_carsismo (vedi Fig.2.4).

Pertanto nelle immediate adiacenze dell'area della cava n.70 oltre a non essere rilevabili sorgenti od emergenze idriche significative, se non quelle presenti in località Canalie e Torano; non sono presenti grotte naturali, cavità, inghiottitoi o qualsiasi altro segno morfologico che possa lasciar supporre la presenza di fenomeni legati ad un carsismo ben sviluppato.

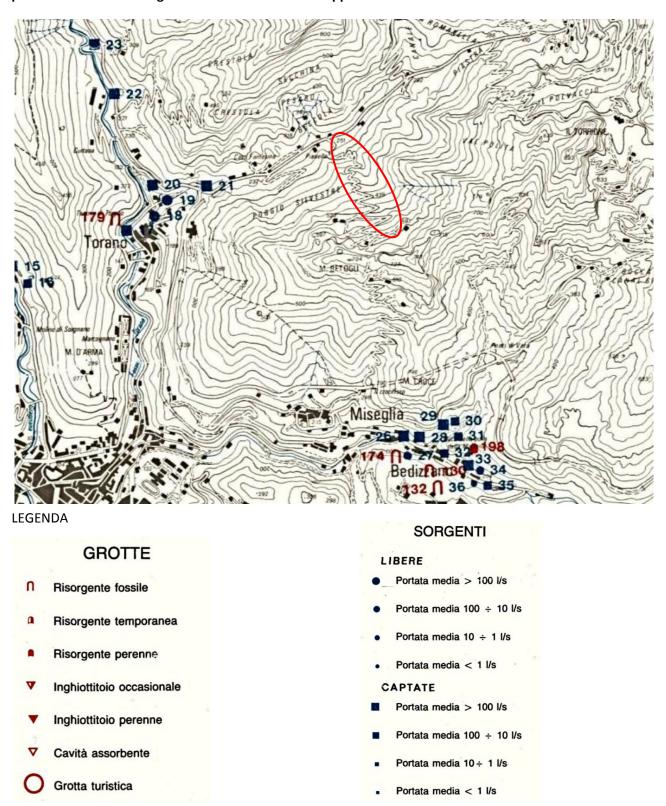


Fig.2.3 – Stralcio fuori scala della "Carta delle grotte e delle sorgenti delle Alpi Apuane"

Regione Toscana - SIPT: Grotte e Carsismo

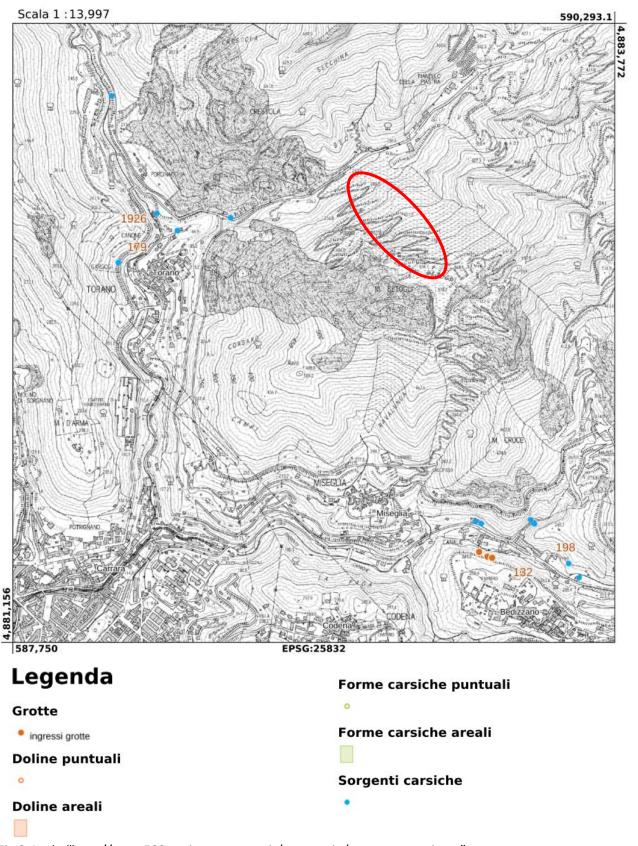


Fig.2.4 –da "http://www502.regione.toscana.it/geoscopio/grotte_e_carsismo"

Dott. Geol. Carlo Alberto Turba

Dott.ssa Geol. Ilaria Salvatori

La natura prevalentemente carbonatica delle rocce, affioranti all'intero dei Bacini Marmiferi di Carrara, condiziona in modo determinante l'assetto idrogeologico; infatti le rocce carbonatiche quali le dolomie, i marmi dolomitici, i marmi e i calcari selciferi, si caratterizzano, se escludiamo le zone dove sono state riscontrate cavità naturali, molto distanti dall'area in oggetto, per una più o meno spinta fratturazione degli ammassi rocciosi.

Altre caratteristiche significative dell'assetto idrogeologico ed idraulico delle Apuane, derivante dalla prevalenza dei litotipi carbonatici, sono relative al modesto ruscellamento superficiale e alla non diretta corrispondenza tra bacino idrografico e bacino idrogeologico.

Di fatto gli spartiacque superficiali non svolgono un ruolo effettivo ed efficace sulla distribuzione della circolazione delle acque sotterranee: per l'intero comparto estrattivo del Comune di Carrara, gli studi idrochimici ed isotopici di seguito citati hanno dimostrato che il bacino idrogeologico che lo comprende trova alimentazione anche da rilievi ed affioramenti carbonatici posti a notevole distanza.

La successione litologica affiorante all'interno del bacino del Torrente Carrione, e più in particolare nell'intono dell'area in studio, vede la serie formata da Marmi, Marmi Dolomitici, Grezzoni e dai Calcari Selciferi: quello che può essere definito come "acquifero carbonatico" è compreso tra le rocce impermeabili del basamento e le rocce a permeabilità bassa o medio bassa come i calcescisti e gli scisti sericitici (tetto della successione).

In corrispondenza della "Cava n.70" e di un suo significativo intorno affiorano i litotipi evidenziati nello stralcio della Carta Geologica Regionale CARG (sezione 249100), riportata nella successiva figura.

Come già riportato anche nello STUDIO PRELIMINARE AMBIENTALE - RELAZIONE TECNICA – VERIFICA ART.48 L.R. 10/2010, redatta dall'Ing. Gardenato, tutta l'area della cava n.70 non risulta interessata dalla presenza di cavità sotterranee (grotte, abissi, etc) determinate da fenomeni carsici; non si rinviene neanche la presenza di fenomeni carsici superficiali né di ingressi ad un possibile sistema carsico adiacente. La permeabilità dell'ammasso roccioso che costituisce il complesso estrattivo risulta di tipo secondario e di alto grado.

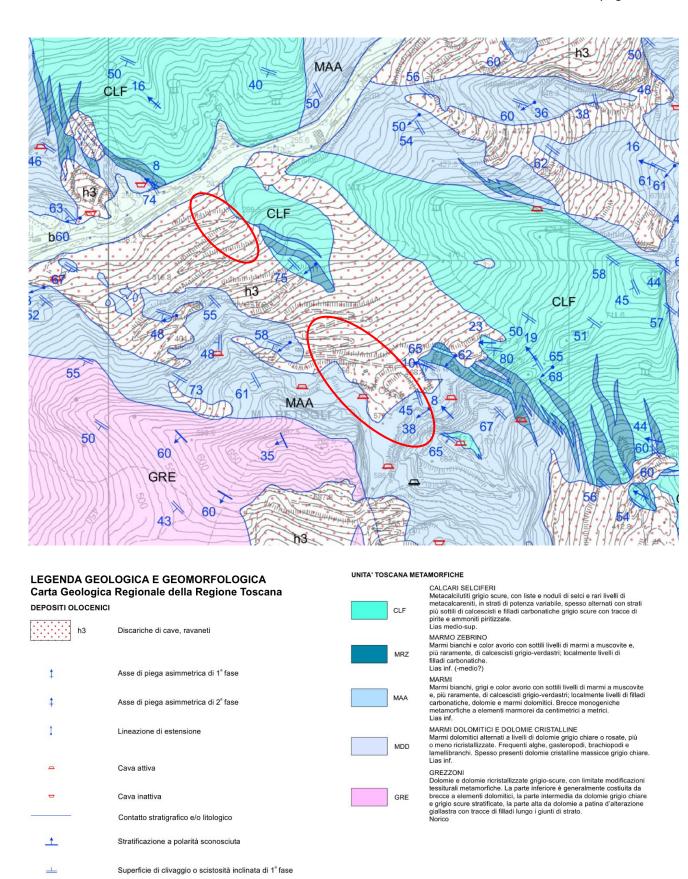


Fig. 2.5 – Stralcio fuori scala della "Carta Geologica Regionale CARG"

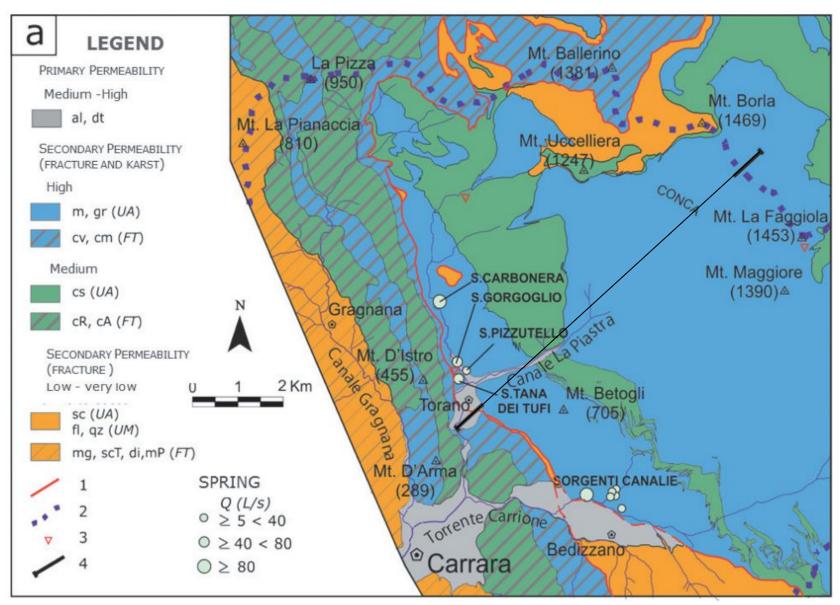


Fig.2.5 – Schema idrogeologico del settore montano del bacino del T. Carrione – da "Studio idrogeologico e idrogeochimico dei sistemi acquiferi carbonatici nel bacino del Torrente Carrione (Alpi Apuane nord-occidentali), M. Doveri

Dott. Geol. Carlo Alberto Turba

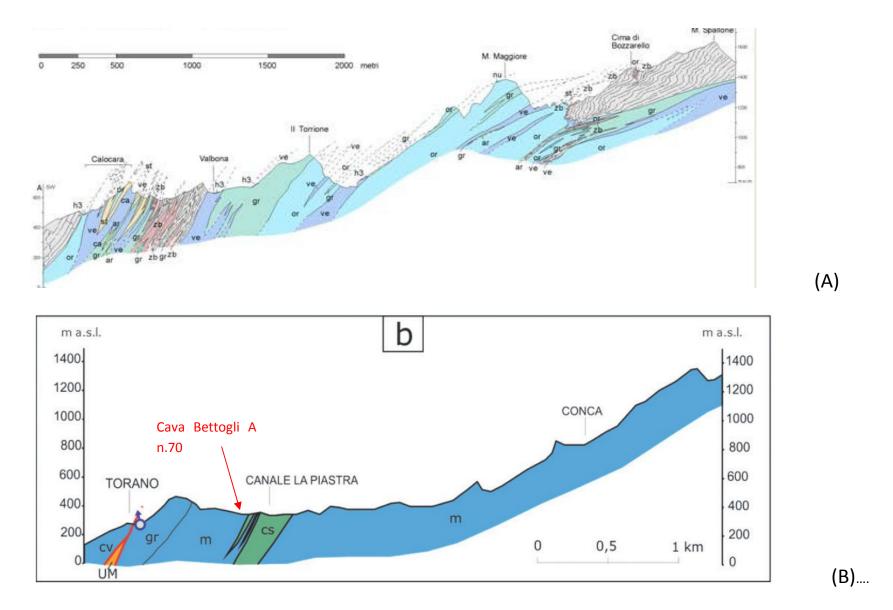


Fig.2.6 – Sezioni idrogeologiche e condizioni d'emergenza nelle loc. Canalie (A) e Torano (B) – da "Studio idrogeologico e idrogeochimico dei sistemi acquiferi carbonatici nel bacino del Torrente Carrione (Alpi Apuane nord-occidentali), M. Doveri"

3 - PRINCIPALI STUDI ESEGUITI NELL'AREA IN ESAME

3.1 STUDIO IDROGEOLOGICO PROTOTIPALE DEL CORPO IDRICO SIGNIFICATIVO DELL'ACQUIFERO CARBONATICO DELLE ALPI APUANE, MONTI D'OLTRE SERCHIO E S.MARIA DEL GIUDICE

In base alle caratteristiche litologiche, tessituriali e geomeccaniche delle rocce dell'Unità Apuana affioranti, gli studi eseguiti dal Centro di GeoTecnologie dell'Università degli Studi di Siena, per conto della Regione Toscana (Studio idrogeologico prototipale del corpo idrico significativo dell'acquifero carbonatico delle Alpi Apuane, Monti d'Oltre Serchio e S.Maria del Giudice), per valutare la vulnerabilità degli acquiferi carbonatici affioranti, sono state individuate, nell'area in esame, tre classi principali di permeabilità (vedi tabella sottostante):

- Formazioni ad alta permeabilità per fratturazione e carsismo (Marmi s.l.);
- Formazione a medio-alta permeabilità per fratturazione e carsismo (Calcari Selciferi, Marmi dolomitici, Grezzoni);
- Formazioni con permeabilità per fratturazione da bassa a molto bassa (Filladi, Porfiroidi, Scisti, ecc).

Grado di permeabilità relativa	Complessi idrogeologici carbonatici permeabili per fratturazione e carsismo	Complessi idrogeologici carbonatici permeabili per fratturazione
٧	MAA	-
IV	MAI, MAS, CCA, ENT, CLF, MDD, GRE, MNI	-
III	STO3, RET, MCP	SVL, LIM, RSA, ANL
II		CGV

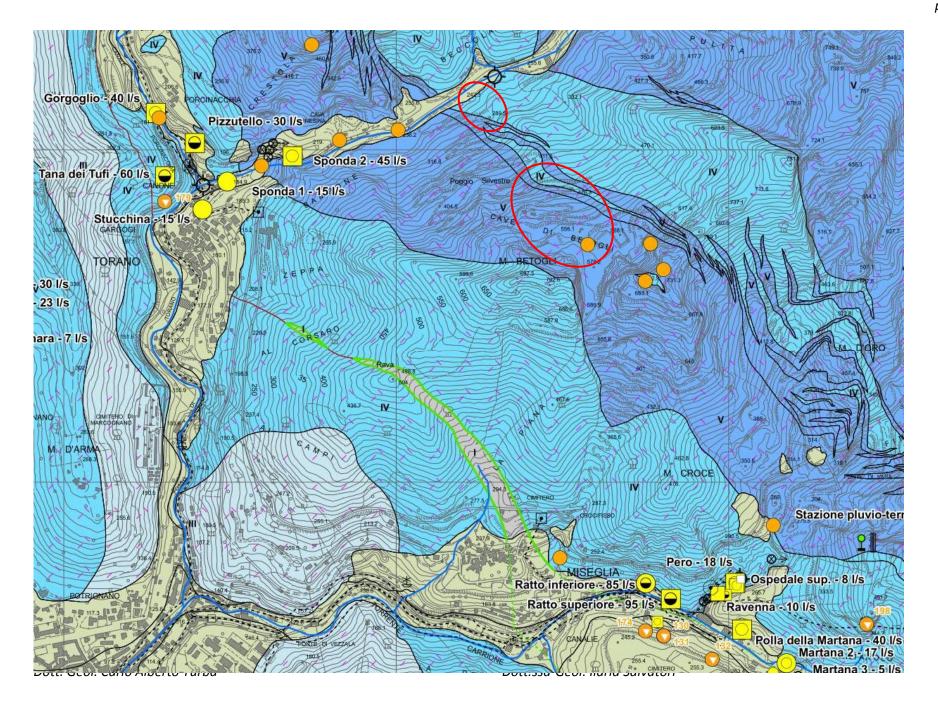
Attribuzione del grado di permeabilità relativa ai complessi idrogeologici non carbonatici.

Complessi idrogeologici non carbonatici permeabili per fratturazione		
Grado di permeabilità relativa		
I	II	
FNE, SSR, SRT, VINa, STO, PRS, FAF, POD	CCVc, OTO, ACCa, ARB, GOT, DSDa, DSD, MAC, PSM	

Attribuzione del grado di permeabilità relativa ai complessi idrogeologici non carbonatici.

- I Permeabilità da bassa a molto bassa
- II Permeabilità medio-bassa
- III Permeabilità media
- IV Permeabilità medio-alta
- V Permeabilità alta

da "Studio idrogeologico prototipale del Corpo idrico significativo dell'acquifero carbonatico delle Alpi Apuane, Monti d'Oltre Serchio e S.Maria del Giuduce" – all.5 Identificazione e classificazione dei complessi idrogeologici per tipo e grado di permeabilità relativa"


A queste va aggiunta una quarta classe caratterizzata da una permeabilità in grande per porosità, di cui fanno parte tutti gli accumuli detritici (ravaneti), strettamente legata alle loro caratteristiche granulometriche e tessiturali; in genere queste coltri di detrito con elevato coefficiente d'infiltrazione, hanno la funzione di trattenere l'acqua di precipitazione e di restituirla gradualmente al substrato.

Nella zona della cava in oggetto, oltre agli affioramenti di marmo e di calcare selcifero che, pur potendoli classificare in base alle tabelle sopra riportate come caratterizzati da una <u>permeabilità per fratturazione e carsismo alta (nei marmi) e medio-alta (nei calcari selciferi), non sono presenti forme di carsismo superficiale sviluppato.</u>

Inoltre, nell'area di concessione, sono presenti vaste zone ricoperte da estesi accumuli detritici (ravaneti), con permeabilità in grande per porosità.

Nello stralcio della "Carta idrogeologica – Corpo Idrico Sotterraneo Significativo delle Alpi Apuane" di seguito riportato sono evidenziate, oltre alle caratteristiche di permeabilità dei litotipi presenti nell'area in esame, le numerose emergenze idriche, rappresentate dalle importanti sorgenti delle Canalie, in corrispondenza del contatto con l' Unità Toscana Metamorfica (SRT – Filladi sericitiche), e quelle di Torano, poste nel versante in destra idrografica del Canale della Piastra.

GRUPPO TORANO		GRUPPO CANALIE	
sorgente	portata media (l/s)	sorgente	portata media (l/s)
Carbonera	80	Ratto inf.	100
Gorgoglio	40	Ratto sup.	80
Tana dei Tufi	40	Martana + Martana inf.	30
Pizzutello	20	Ravenna	10
Sottocasa	25	Pero sup.	10
Sponda	5	Pero inf.	10
Ponte	1	Ospedale	5
totale	211	totale	245

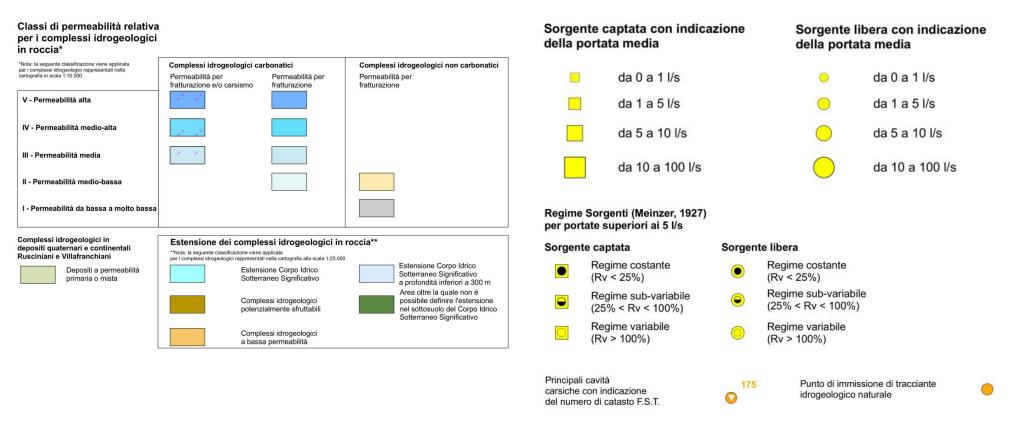


Fig.3.1 – Stralcio fuori scala della "Carta idrogeologica – Corpo Idrico Sotterraneo Significativo delle Alpi Apuane"

Nell'acquifero carbonatico dell'area in esame il deflusso sotterraneo viene guidato solo localmente dall'andamento della superficie di base impermeabile; questa superficie, a causa del complesso assetto strutturale delle Alpi Apuane, è individuata a quote molto diverse, anche sotto il livello del mare.

Quindi la circolazione in grande è essenzialmente dovuta alla differenza di quota tra il fondo delle valli del versante Nord-Est e quello delle valli del versante Sud-Ovest, che determina un deflusso di base prevalente da N-E a S-O.

Le coltivazioni all'interno della cava in esame non interessano, quindi, direttamente la falda che si trova sicuramente a quote molto più basse.

Nel lavoro realizzato dal Centro di GeoTecnologie dell'Università degli Studi di Siena viene effettuata anche una valutazione della <u>vulnerabilità intrinseca degli acquiferi all'inquinamento</u>.

Tale dominio di studio è stato scelto sia per la disponibilità di dati sia per le note problematiche relative alla protezione della risorsa idrica (fenomeni di intorbidamento delle sorgenti e inquinamento da idrocarburi) che lo rendono un'area particolarmente a rischio.

Il sistema idrogeologico di Carrara si estende in una zona fortemente antropizzata e interessata da intensa attività estrattiva.

Al momento della redazione dello Studio citato risultavano attive 90 cave (Comune di Carrara, 2001) concentrate su di un'area estesa circa 2000 ha. La maggior parte delle cave (73.3%) viene coltivata a cielo aperto, le restanti (26.7%) sono coltivate in sotterraneo.

Secondo i dati disponibili (Comune di Carrara, 2001) le possibili potenziali fonti di inquinamento delle acque sotterranee sono essenzialmente due:

- eccessiva presenza di solidi sospesi ("marmettola");
- presenza di idrocarburi.

La "marmettola" è il residuo fine risultante dalla lavorazione dei marmi.

L'aumento della sua concentrazione nelle acque superficiali, soprattutto in occasione di forti precipitazioni, può determinare fenomeni di intorbidamento, determinando un peggioramento della qualità delle acque ad uso idropotabile; l'altra fonte di potenziale inquinamento è rappresentata da possibili contaminazioni accidentali da idrocarburi.

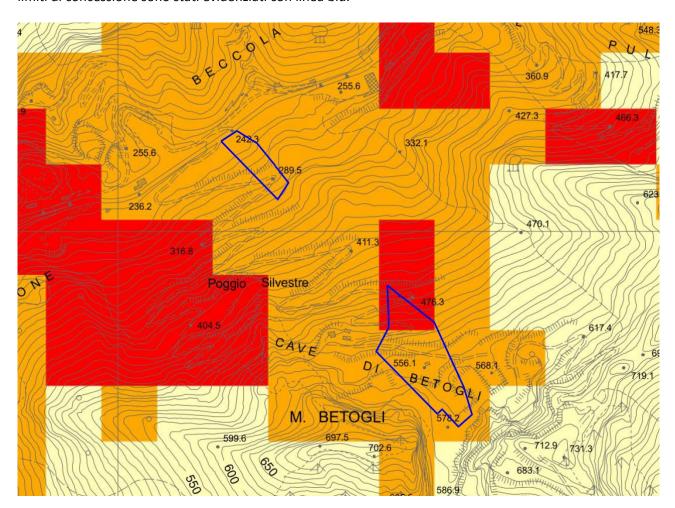
Il monitoraggio iniziato da parte della locale ASL nel 1991 e l'obbligo di smaltimento degli oli usati presso il Consorzio Obbligatorio a partire dal 1988 hanno ridotto in maniera sensibile la possibilità di incidenti e di inquinamento delle acque sotterranee da parte degli idrocarburi.

Per la valutazione della vulnerabilità è stato utilizzato il metodo COP; questo è un metodo parametrico a punteggi e pesi, basato su tre fattori principali (parametri) calcolati secondo uno schema che consente la definizione di un indice di vulnerabilità intrinseca, moltiplicando i tre fattori suddetti:

COPIndex = $C \times O \times P$

I tre fattori (da cui l'acronimo COP) sono:

- Processi di infiltrazione (flow Concentration);
- Copertura (Overlying layers);
- Precipitazioni (Precipitation).


Tale metodologia permette di stimare il grado naturale di protezione dell'acquifero (**Fattore O**), determinato dalle proprietà dei suoli e delle litologie costituenti la zona non satura, e valutare come questa protezione possa essere modificata dai processi di infiltrazione (diffusa o concentrata, **Fattore C**) e le condizioni climatiche (precipitazioni, **Fattore P**).

Il fattore C prende in considerazione la presenza di fenomeni carsici come doline o inghiottitoi (*swallow hole*) e la loro area di alimentazione come elementi che diminuiscono la protezione fornita naturalmente dagli strati che costituiscono la zona non satura, valutata nel fattore O. Il fattore P, infine, prende in considerazione l'effetto delle precipitazioni e della loro variabilità spaziale e temporale (in termini di quantità e intensità) nella riduzione del fattore O.

Una volta calcolati i tre fattori può essere ricavata la distribuzione dell'indice COP.

Dott. Geol. Carlo Alberto Turba

Nella seguente figura è riportato uno stralcio della "Carta della Vulnerabilità intrinseca all'Inquinamneto del Sistema idrogeologico di Carrara – Metodo COP", nell'intorno della zona in cui è ubicata la "Cava n.70", i cui limiti di concessione sono stati evidenziati con linea blu.

Legenda *Legend*

COP Index

Classi di Vulnerabilità Vulnerability classes

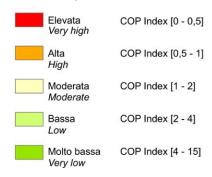


Fig.3.2 – Stralcio fuori scala della "Carta della Vulnerabilità Intrinseca all'Inquinamento del Sistema Idrogeologico di Carrara – Metodo COP"

Da questo stralcio, come in tutta la carta sopra citata, si nota come nell'area dove affiorano i litotipi carbonatici, la vulnerabilità varia da Moderata ad Elevata.

Classi di vulnerabilità Elevata si riscontrano in aree dove lo spessore della zona non satura non supera i 250m. Tali aree sono concentrate nella parte centrale del sistema, in prossimità dei fondivalle.

Il fattore C influenza, invece, l'assegnazione di valori dell'indice COP tra 0.5 e 1 laddove l'assenza o l'esiguità della copertura superficiale e/o il rapporto vegetazione/pendenza favoriscono il processo di infiltrazione piuttosto che il ruscellamento superficiale.

Ciò è evidente nella zona NO del sistema dove troviamo aree in cui è presente una copertura vegetale, con pendenze comprese tra l'8 ed il 31%, ed uno spessore dell'insaturo inferiore ai 250 m: in questa zona si riscontrano aree con classe di vulnerabilità Alta.

La stessa situazione si evidenzia nell'area a sud-est del sistema.

Laddove, invece, il valore dello spessore dell'insaturo supera i 250 m e le pendenze superano l'8% in zone prive di copertura vegetale, il grado di vulnerabilità risulta Alto.

Le aree con classe di vulnerabilità Bassa sono, invece, concentrate in zone in cui o affiorano litotipi a bassa permeabilità o sono presenti estese coperture quaternarie (depositi morenici nell'area nord orientale del sistema). Si tratta di zone in cui il ruscellamento prevale sull'infiltrazione o dove il valore dell'indice C ha un peso maggiore sul calcolo della classe di vulnerabilità, a causa della presenza di alluvioni di fondovalle o depositi morenici.

La presenza di uno *swallow hole* nella parte Nord del sistema (tratto iniziale del Canal d'Abbia, a ovest del M. Ballerino) determina la presenza di un'area in cui l'indice di vulnerabilità è compreso tra 0 e 0.5: in questa zona la possibilità di attenuazione nel livello non saturo viene oltrepassata ed è favorita l'infiltrazione diretta di sostanze verso la superficie piezometrica (vedi Fig. 3.3).

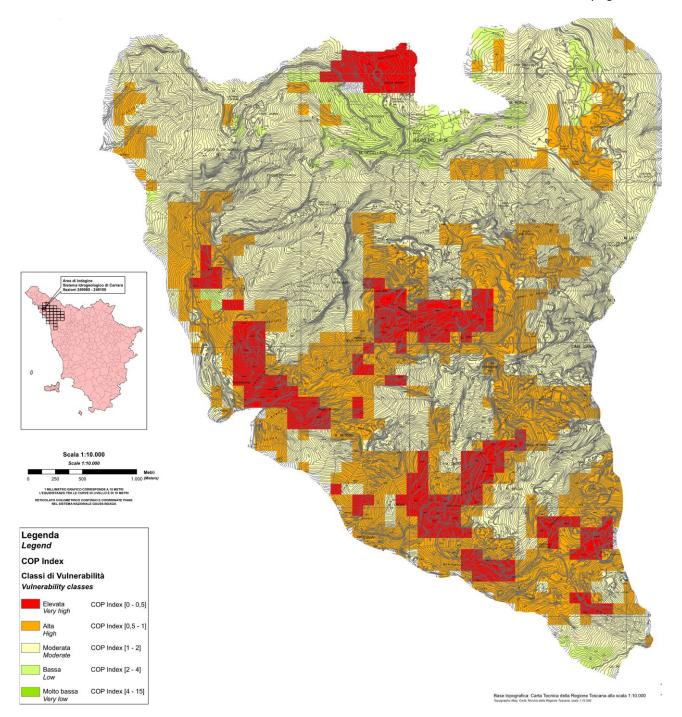
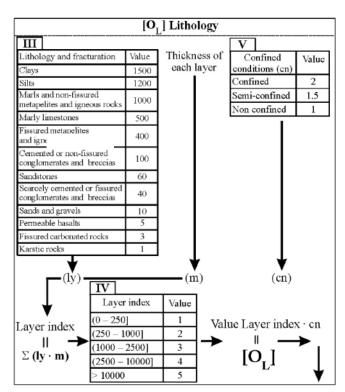


Fig.3.3 – "Carta della Vulnerabilità Intrinseca all'Inquinamento del Sistema Idrogeologico di Carrara – Metodo COP" (fuori scala)

In conclusione i risultati ottenuti in tale studio evidenziano che:

- i valori delle classi di vulnerabilità variano da Moderata ad Elevata;
- le aree in classe di vulnerabilità Elevata sono concentrate in zone in cui il valore dell'indice di protezione O è molto basso e dove la riduzione della protezione risulta Moderata;
- il fattore C influenza l'assegnazione della classe di vulnerabilità Alta laddove la copertura superficiale favorisce il processo di infiltrazione piuttosto che il ruscellamento superficiale (aree con pendenze comprese tra l'8 ed il 31%);
- il grado di vulnerabilità Basso è attribuito a quelle aree in cui affiorano litotipi a bassa permeabilità oppure sono presenti coperture quaternarie di una certa estensione.

Come ben visibile dallo stralcio cartografico precedentemente riportato (Fig. 3.2), l'area in cui è ubicata la "Cava n.70" è compresa tra la classe alta e la classe elevata.


Il confronto con le cartografie prodotte da tale studio e quelle pregresse consentono di affermare che per alcune aree la stima della vulnerabilità ha individuato uno scenario più cautelativo di quello ottenuto da lavori effettuati in passato.

Anche nello "Studio per la delimitazione delle zone di rispetto delle Sorgenti del Gruppo di Torano, ai sensi dell'art. 94 del D.Lgs 152/06", redatto dai geologi Bruschi e Criscuolo del Comune di Carrara, viene osservato che il metodo utilizzato nello studio del Centro di GeoTecnologie dell'Università degli Studi di Siena può fornire una valutazione corretta a grande scala, ma non riesce comunque a definire una vulnerabilità areale di dettaglio, fortemente influenzata da fattori locali, di difficile individuazione.

Anche a parere degli scriventi se si tiene conto, per l'area in studio, del sistema idrogeologico locale, il metodo COP fornisce valori di vulnerabilità, anche se di poco, inferiori da quelli ottenuti a grande scala. Infatti, per l'applicazione di questo metodo, sembra eccessivamente cautelativo considerare, per il sottofattore O_L ' tutti i marmi come "rocce carsiche" e non come "rocce carbonatiche fratturate", in quanto nell'area della cava in esame e in un suo significativo intorno non sono stati rilevati elementi che possano far ritenere l'intero ammasso roccioso interessato da un"carsismo sviluppato".

Tale attribuzione appare più congruente anche con la classificazione delle principali caratteristiche di permeabilità, predisposta dallo stesso gruppo di lavoro.

Infatti anche gli estensori dello studio affermano, nelle loro conclusioni, che la scelta di classificare le rocce carbonatiche affioranti nell'area in esame come "karstic rocks" (rocce carsiche) ha portato ad uno scenario "peggiore" per quanto riguarda la valutazione della vulnerabilità intrinseca degli acquiferi carbonatici.

Geologia scala 1:10.000	Litologia riclassificata	Valore assegnato
'FAFa', 'FNE', 'MGC', 'OTH', 'OTHb', 'PRS', 'SRT', 'SRTa', 'SSR', 'STO', 'VINa', 'beta', 'MRQ', 'DSD', 'DSDa'	Fissured metapelites and igneous rocks	400
'b', 'bna', 'bnb', 'bnb1', 'bnb3', 'c1a', 'c1b'	Sands and gravels	10
'ANL', 'RSA', 'MNI', 'MNIa', 'MNIb', 'MNIc'	Fissured carbonated rocks	3
'RET', 'MAS', 'BSE', 'BSEa', 'STO3', 'MMG', 'MCP', 'MAI', 'ENT', 'CLF', 'MDD', 'MDL', 'GRE', 'GREa', 'FAN', 'MRZa', 'MRZ', 'MAA'	Karstic rocks	1

L'assunzione di un valore di O_L=3 (*fissured carbonated rocks*), anziché 1 (*karstic rocks*), avrebbe permesso di ottenere dalla formula

COPIndex = $C \times O \times P$

[.] Tabella per la valutazione del sotto-fattore O_L.

per l'area in esame, un'indice COP, compreso nell'intervallo 1-2, corrispondente ad una classe di vulnerabilità moderata.

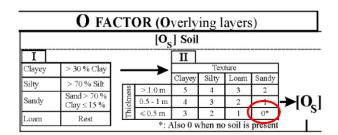
Valore indice COP	Classe di vulnerabilità	Colore
0-0.5	Elevata	
0.5-1	Alta	
1-2	Moderata	
2-4	Bassa	
4-15	Molto bassa	

Classificazione del grado di vulnerabilità secondo l'indice COP.

Per avvalorare quanto detto, di seguito, vengono riassunti i vari passaggi che hanno permesso di ricalcolare i tre indici che concorrono alla valutazione della classe di vulnerabilità.

FATTORE O

Il fattore O prende in considerazione la funzione protettiva della zona non satura e la capacità dei singoli layer che la costituiscono di attenuare un possibile contaminante.


Il metodo COP prende in considerazione solo due layer:

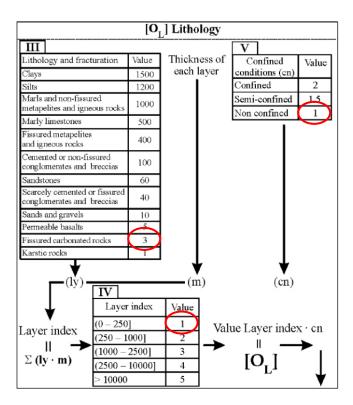
- suolo -O_s, che comprende il Topsoil (zona biologicamente attiva) ed il Subsoil (materiali non consolidati come sabbie, ghiaie, argille)
- litologia della zona non satura -O_L, che comprende i due layer geologici (Rocce non carsificabili come arenarie e argilliti e Rocce carsificabili -zona non satura).

Il valore del fattore O è ottenuto sommando i due sotto-fattori: O_{map}=O_S+O_L.

Distribuzione dell'indice Os

Per la valutazione della distribuzione dell'indice O_s nel dominio di studio vengono presi in considerazione lo spessore e la tessitura del suolo, il cui ruolo è importante per l'attenuazione dei contaminanti.

All'interno dei confini della "Cava n.70", non essendo presente suolo, si può assumere un valore di O_s=0.


Distribuzione dell'indice O_L

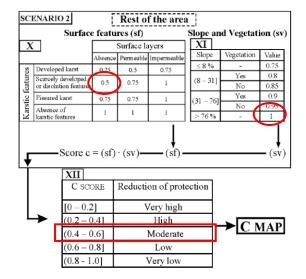
Il sotto-fattore litologia O_L riflette la capacità di attenuazione di ciascun layer geologico all'interno della zona non satura attraverso la relazione

 $O_L = cn \times Value \Sigma(ly \times m)$

dove:

- ly, è un peso per la tipologia della roccia ed il grado di fatturazione;
- m, indica lo spessore di ciascun layer;
- cn, è un peso che indica le condizioni di confinamento della superficie piezometrica.

All'interno dei confini della "Cava n.70", sono stati assunti, per i vari fattori, i seguenti valori:


- come ly, un valore pari a 3, in quanto appare troppo cautelativo considerare i marmi come rocce completamente carsiche, poichè come già evidenziato nell'area delle cave e in un loro significativo intorno non sono stati rilevati elementi che possano far ritenere l'intero ammasso roccioso come "Karstic rocks"; la validità di assunzione trova conferma questa "STUDIO anche nello ISOTOPICO-**IDRODINAMICO** DELLE **PRINCIPALI** SORGENTI CARSICHE SITUATE COMUNE DI CARRARA" (vedi paragrafo successivo), dove si afferma che alle sorgenti delle Canalie e di Torano è stata registrata una generale stabilità dei contenuti in ossigeno-18 (δ 180‰ vs V-SMOW), che indica la presenza di un carsismo non molto sviluppato;
- come m un valore pari ad 1, in quanto lo spessore dei marmi è stato considerato compreso fra 0 e 250m;
- come cn, un valore pari a 1, in quanto nell'area di studio non si rilevano condizioni di confinamento o semiconfinamento dell'acquifero in esame.

Pertanto il valore risultante di O_L =cn×Value $\Sigma(ly\times m)$ è pari a 3.

Fattore C.

Il fattore C svolge la funzione di modificatore del fattore O ed esprime la potenzialità che l'acqua possa superare la protezione naturale fornita dagli strati della zona non satura, infiltrandosi attraverso elementi carsici superficiali; per l'attribuzione di questo fattore occorre prima definire lo scenario (swallow hole recharge area o rest of the area).

Per le caratteristiche idrogeologiche dell'area in esame, come di quasi tutto il bacino del T.Carrione, nello studio del Centro di GeoTecnologie dell'Università degli Studi di Siena, è stato considerato lo <u>scenario 2</u>, scenario utilizzato anche in questa rivisitazione.

Il parametro sf considera gli elementi geomorfologici specifici di rocce carbonatiche e la presenza o assenza di ogni livello superficiale (permeabile o impermeabile) che determina l'importanza del runoff e/o dei processi di infiltrazione.

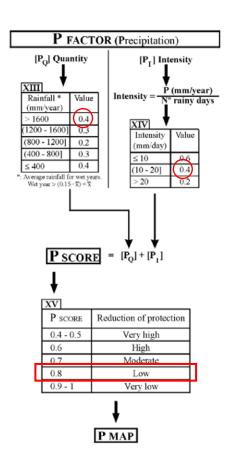
L'area delle cave è stata classificata come area caratterizzata da un carsismo superficiale scarsamente evoluto (Scarcely developed or dissolution fissured) privo di copertura superficiale a cui corrisponde un valore di 0.5 del parametro sf. Per quanto riguarda il parametro Slope and vegetation (sv) nell'area di cava si può considerare una pendenza media superiore al 76%.

Il fattore C si ricava moltiplicando sf ed sv:

C=sf×sv

Nel nostro caso si ottiene un valore di C pari a 0.5, cui corrisponde una "riduzione della protezione" moderata.

Fattore P.


Questo fattore include la quantità di precipitazione e i parametri che influenzano il tasso di infiltrazione, come la frequenza, la distribuzione temporale, la durata e l'intensità degli eventi piovosi estremi e permettono di determinare la capacità delle precipitazioni di favorire il trasporto di sostanze dalla superficie verso la superficie piezometrica.

Il fattore P si determina attraverso la definizione di due parametri: Po e Pi.

Il parametro P_Q descrive gli effetti della quantità di pioggia e della ricarica annuale e corrisponde alla media delle precipitazioni annuali in una serie storica di "anni umidi" (wet year1).

Il parametro P_1 riguarda la distribuzione temporale delle precipitazioni in un certo periodo e pertanto è indicativo dell'intensità di precipitazione.

Per la sua determinazione si considerano in un "anno umido" la media delle precipitazioni annue e il numero di giorni piovosi.

Per il calcolo di tali parametri sono stati utilizzati i dati delle stazioni pluviometriche di Vara, Torano e Campocecina, appartenenti al Servizio Idrologico Regionale (SIR) che sono le più vicine alla zona della cava n.68.

Le stazioni suddette forniscono valori di piogge sempre superiori a 1600mm/anno, cui corrisponde un valore di P_Q pari a 0.4.

Per quanto riguarda il parametro P_I, in tutte le stazioni è stata ottenuta un'intensità, ricavata dividendo i mm di pioggia annua per il numero di giorni piovosi, compresa fra 10 e 20, cui corrisponde un valore pari a 0.4.

Pertanto P è risultato, per la zona in esame, pari a 0.8, cui corrisponde una riduzione della protezione bassa.

Una volta determinati i tre fattori si è calcolato l'indice COP che, per l'area in esame, è risultato pari a 1.2, cui corrisponde una <u>classe di vulnerabilità moderata</u>.

COPIndex = $C \times O \times P = 0.5 \times 3 \times 0.8 = 1.2$

Valore indice COP	Classe di vulnerabilità	Colore
0-0.5	Elevata	
0.5-1	Alta	
1-2	Moderata	
2-4	Bassa	
4-15	Molto bassa	

3.2 STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI CARSICHE SITUATE NEL COMUNE DI CARRARA

Negli anni passati sono stati condotti numerosi studi idrogeologici, idrochimici ed isotopici, commissionati sia dall'Amministrazione Comunale che dalla società gestrice della rete acquedottistica.

Nell'anno 2002 è stato eseguito uno "STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI CARSICHE SITUATE NEL COMUNE DI CARRARA" (a cura dell'Ing. Mario Mussi, con la collaborazione del Dr. Marco Doveri, di Enrico Calvi, Nada Gelli e Renzo Giorgi per la parte analitica), che aveva lo scopo principale di contribuire a comprendere i fenomeni di intorbidamento delle sorgenti all'epoca gestite dall'A.M.I.A. S.p.A. per la distribuzione di acqua potabile nel Comune di Carrara, che avvengono nella quasi totalità dei casi in occasione di eventi meteorici, l'origine del materiale di intorbidamento, nonché di individuare le eventuali aree di alimentazione.

L'approccio innovativo proposto con tale studio, prevedeva di utilizzare gli isotopi stabili e radioattivi naturalmente presenti nelle acque (²H, ³H, ¹⁸O) quali traccianti naturali per evidenziare le varie componenti che entrano in gioco nel determinare la risposta degli acquiferi in occasione di precipitazioni.

Nelle conclusioni di tale studio, per quanto riguarda il gruppo delle **Sorgenti delle Canalie**, vengono individuati due principali acquiferi

- un primo, caratterizzato da una quota media d'infiltrazione di circa 1200 m s.l.m., relativo alla sorgente Ravenna
- un secondo, con una quota media d'alimentazione di circa 900 m s.l.m., drenato da tutti gli altri punti del gruppo Canalie (Ratto sup., Ratto inf., Ospedale, Pozzo 5 Fontane).

L'alimentazione principale di questi sistemi di circolazione è probabilmente da attribuire sia alla parte del bacino del Canal Grande, posto a monte di Fantiscritti, sia alla zona medio alta ed in sinistra idrografica del Canale La Piastra.

I sistemi di circolazione che alimentano le Sorgenti delle Canalie risultano meno sensibili agli eventi meteorici rispetto a quelli del gruppo di Torano; in particolare la sorgente Ratto inferiore ha evidenziato una marcata stabilità nei contenuti isotopici, mentre per le sorgenti Ravenna, Ospedale e Ratto superiore e per il Pozzo 5 Fontane sono state registrate piccole variazioni.

Per la sorgente Ravenna ed il Pozzo 5 Fontane è stata ipotizzata un'influenza da parte delle piogge che cadono tra la zona Fantiscritti (circa 450 m s.l.m.) e la zona di emergenza (200 m s.l.m.) e che i quantitativi d'acqua che vanno a perturbare il deflusso di base sono sostanzialmente inferiori rispetto ai volumi di quest'ultimo; nel caso delle emergenze Ratto sup. e Ospedale sembra invece probabile una miscelazione tra le acque del Canal Grande ed il deflusso di base delle sorgenti stesse.

Per quanto detto l'effetto immediato delle piogge, per questo gruppo di acque, peraltro meno importante, ha origine da aree di assorbimento poste a quote inferiori ai 400-500 m s.l.m., nelle vicinanze delle emergenze.

Gli acquiferi principali, caratterizzati da quote medie d'infiltrazione superiori ai 900m s.l.m., hanno la capacità di modulare le acque piovane che si infiltrano, non permettendo alle stesse di arrivare in maniera diretta alle sorgenti.

Anche per quanto riguarda il gruppo delle <u>Sorgenti di Torano</u> si possono individuare tre sistemi acquiferi principali ben differenziati fra loro, i quali alimentano rispettivamente la Sorgente Carbonera, le Sorgenti Gorgoglio e Pizzutello e la Sorgente Tana dei Tufi.

Il pozzo Torano rappresenta un termine intermedio ai precedenti e ciò potrebbe esser frutto di un mescolamento.

Pertanto per il gruppo delle Sorgenti di Torano le caratteristiche morfologiche ed idrogeologiche della zona indicano che:

- le acque della sorgente Carbonera, caratterizzate da una quota media d'infiltrazione di circa 950m s.l.m., con alimentazione prevalente dalla parte medio-alta del bacino del T. Carrione compresa tra Campocecina, T. Torano e C. La Piastra
- le acque delle sorgenti Pizzutello-Gorgoglio per le quali i dati isotopici hanno evidenziato una rilevante alimentazione dal retro versante (con buona probabilità la zona che ricade sulla continuazione dell'asse medio del bacino del Carrione, immediatamente a nord-est dello spartiacque idrologico). In definitiva, per queste due sorgenti, possiamo considerare quale area principale d'alimentazione, quella che si estende a cavallo dello spartiacque idrografico del Carrione dalle quote medio-alte del bacino del C. La Piastra fino alla zona che ricade nel bacino del Lucido di Vinca
- le acque della Sorgente Tana dei Tufi, la cui quota media d'infiltrazione è analoga a quella di Carbonera (circa 950m s.l.m.), evidenziando valori diversi di Tritio e dell'andamento della portata, indicano un acquifero distinto; è ipotizzabile un'alimentazione principale dalla parte alta del C.Boccanaglia con contributi secondari dall'alto morfologico che divide il T.Torano dal T.Gragnana.
- infine le acque del Pozzo Torano presentano dati isotopici intermedi ai precedenti, indice di un'alimentazione da quote medie di circa 1250m s.l.m.; tenuto conto della posizione del pozzo, questo può esser frutto di un mescolamento dei sistemi di circolazione sopra discussi.

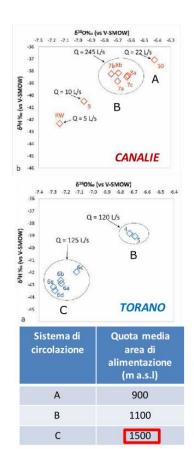
I picchi di portata e di torbidità che si osservano in occasione di piogge, sia per Carbonera che per Pizzutello e Gorgoglio sono generati dal rapido apporto di volumi d'acqua infiltratisi da superfici poco estese (se confrontate con gli interi bacini d'alimentazione) che coprono settori immediatamente a monte delle emergenze.

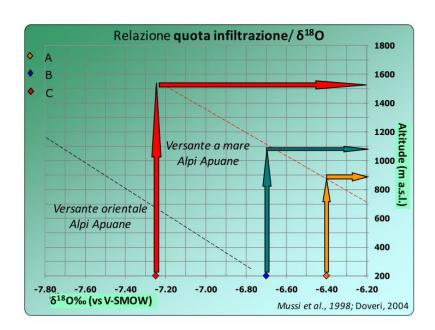
Dall'analisi dei dati di torbidità e di portata delle sorgenti Pizzutello e Gorgoglio si è avvertita la possibilità di piccoli contributi a quest'ultime da parte di acque superficiali, probabilmente provenienti dal Canale La Piastra.

I picchi di portata e di torbidità che interessano la sorgente Tana dei Tufi sono dovuti principalmente ad acque che si infiltrano dal Torrente Torano, mente i volumi d'acqua erogati dal pozzo Torano sono del tutto preservati dall'arrivo di acqua di neoinfiltrazione e questo garantisce un costante emungimento di acqua limpida.

Per quanto fin qui esposto appare evidente, visto che la cava in esame si estende fra le quote di 250 e 600m s.l.m., che le sorgenti del Gruppo Torano e delle Canalie non possono essere alimentate da acque infiltratesi a tali quote.

Successivamente è stato condotto un approfondimento di tale studio - Studio idrogeologico e idrogeochimico dei sistemi acquiferi carbonatici nel bacino del Torrente Carrione (Alpi Apuane nordoccidentali) M. Doveri - 2008, allo scopo di verificare il comportamento dei contenuti isotopici relativo al deflusso di base (emergenze non perturbate nel breve periodo da acque di neoinfiltrazione) degli acquiferi in esame, campionando ed analizzando pozzi, sorgenti e torrenti in momenti preceduti da un sufficiente periodo a nulla o scarsa piovosità.


Nei punti di recapito della circolazione sotterranea si è registrata una generale stabilità dei contenuti in ossigeno-18 (δ^{18} O‰ vs V-SMOW), con escursioni massime generalmente dell'ordine dell'errore di misura (± 0.1 δ ‰).


Questo aspetto, dato che i campionamenti sono avvenuti in diverse condizioni di regime, evidenzia <u>un</u> <u>carsismo non molto sviluppato</u> e condizioni idrostrutturali, con i Calcari selciferi meno permeabili al nucleo della Sinclinale di Carrara che favoriscono l'omogeneizzazione di acque infiltratesi nell'arco di tempo di uno o più anni.

In caso contrario con lo studio della falda di base si osserverebbero, in analogia con altre emergenze del massiccio apuano (Doveri, 2000), rilevanti variazioni isotopiche da mettere in relazione con i differenti contenuti isotopici che caratterizzano le piogge nelle diverse stagioni dell'anno.

Sulla base dei valori medi di ossigeno-18 e deuterio (δ^2 H‰ vs V-SMOW), in entrambi i settori Torano e Canalie sono stati individuati 3 sistemi di circolazione ben distinti, da considerare nell'insieme indipendenti. Scambi idrici sono tuttavia possibili, come mostrato in particolar modo nel settore Canalie, dove le sorgenti Ravenna e Pero inf. presentano caratteristiche isotopiche indicative di mescolamenti tra principali sistemi di circolazione.

Per i vari sistemi individuati sono state stimate le relative quote medie di alimentazione (vedi grafici successivi), sulla base di un confronto tra i contenuti medi di ossigeno-18 dei sistemi stessi e le rette quota/ossigeno-18 determinate per la zona da Mussi *et al.* (1998) ed integrate con ulteriori dati da Doveri (2004).

Questa quota corrisponde alla quota più alta raggiunta nel bacino idrografico. Questo indica che l'area di alimentazione di queste sorgenti si estende al di là del bacino idrografico verso settori più interni

Fig. 3.4 - Quote medie di alimentazione dei principali sistemi di circolazione.

Successivamente per valutare l'influenza delle precipitazioni sulle emergenze in studio, sono state condotte indagini isotopiche e chimiche in occasione di sei eventi meteorici significativi; oltre alle acque emergenti sono state analizzate le piogge raccolte a varie quote, al fine di marcare isotopicamente e chimicamente le acque di neoinfiltrazione.

I dati ottenuti indicano che i circuiti rapidi che in occasione di eventi meteorici perturbano, in termini di portata e torbidità, il regolare deflusso alle emergenze, si attivano nella parte medio bassa del bacino e principalmente nella zona a valle del Calcare Selcifero coinvolto al nucleo della sinclinale di Carrara.

A conclusione di tale approfondimento di studio, che ha tenuto conto anche di alcune prove di tracciamento diretto effettuate dall'Ufficio Ambiente del Comune di Carrara, è stato possibile ricostruire lo schema di circolazione riportato nella seguente figura.

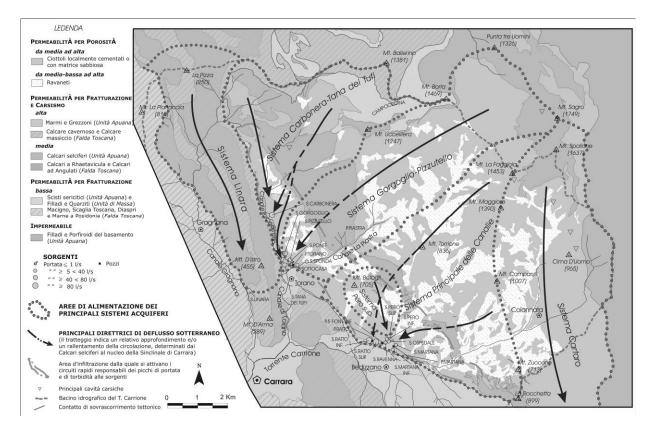


Fig. 3.5 - Schema di circolazione dei principali sistemi acquiferi del bacino del T.Carrione.

In esso sono stati delimitati i principali sistemi di circolazione individuati e l'area d'infiltrazione ritenuta più critica, in termini di risposta delle emergenze all'evento piovoso.

Un altro aspetto emerso dallo studio è l'importante ruolo idrodinamico che risulta avere il Calcare selcifero implicato al nucleo della Sinclinale di Carrara. La minore permeabilità di questo termine rispetto ai Marmi, accentuata anche dalle condizioni strutturali, sembra di fatto favorire un rallentamento e una significativa omogeneizzazione della ricarica che avviene nella parte più a monte.

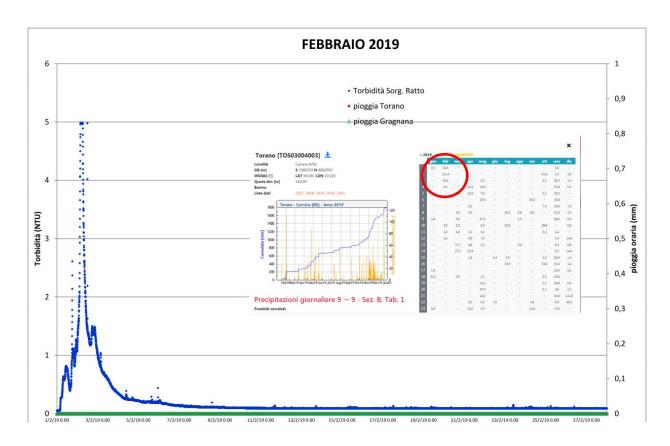
Ciò determina una generale stabilità nel tempo dei parametri idrochimico-isotopici del flusso di base e fa si che, in occasione di eventi meteorici, l'attivazione dei circuiti rapidi responsabili dei picchi di portata e di torbidità alle emergenze sia limitata alla sola zona posta alle quote medio-basse del bacino.

Alla luce di tali conclusioni appare evidente che le attività svolte all'interno della "Cava n.70", nella peggiore delle ipotesi, potrebbero influenzare solamente i circuiti superficiali, alimentati dalle precipitazioni, che ricadono tra le quote comprese fra 450 e 200m s.l.m.

4 - CONFRONTO FRA I VALORI DI TORBIDITA' E LE PRECIPITAZIONI REGISTRATE ALLE STAZIONI DI TORANO E GRAGNANA

Per verificare se esistono possibili interconnessioni tra le lavorazioni di escavazione eseguite nella cava "Bettogli A n.70" e il gruppo delle sorgenti delle Canalie, sono stati analizzati i dati forniti dalla Soc. GAIA SPA relativi alla torbidità misurata all'interno della sorgente Ratto, in cui confluiscono anche le acque della sorgente Martana, negli anni 2012-aprile 2021, registrati ad intervalli di 3 minuti.

Tali valori sono stati confrontati con le precipitazioni registrate ai pluviometri di **Torano** e **Gragnana**, facenti parte della rete di monitoraggio della Soc. GAIA SPA; i valori di pioggia, sempre relativamente all'intervallo temporale 2012-2021, sono riportati con cadenza oraria, predisponendo grafici per ogni mese di osservazione.

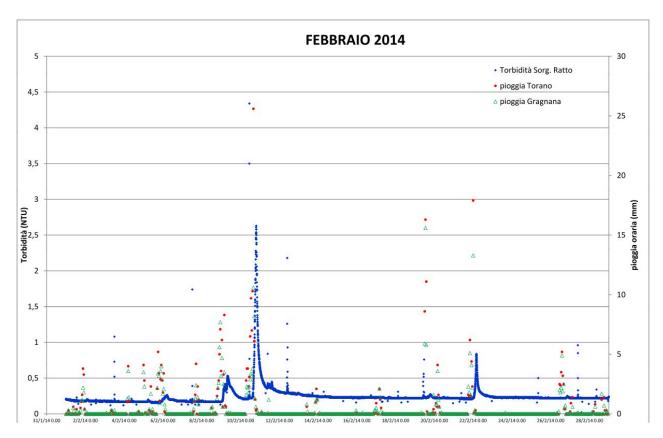

Di seguito vengono allegati i grafici più significativi per ogni anno di osservazione, cioè quelli dove si è raggiunto o superato il limite prefissato di 4NTU, intendendo per "Torbidità Sorgente Ratto" quella della somma di sorgenti che vengono immesse in rete come acqua potabile (Sorg. Ratto, Sorg. Martana ed altre). Prima di iniziare l'esposizione dei grafici ricavati per l'intervallo temporale sopra citato devono essere fatte alcune precisazioni per quando riguarda l'attendibilità dei dati pluviometrici e delle concentrazioni di torbidità massime ammissibili in NTU.

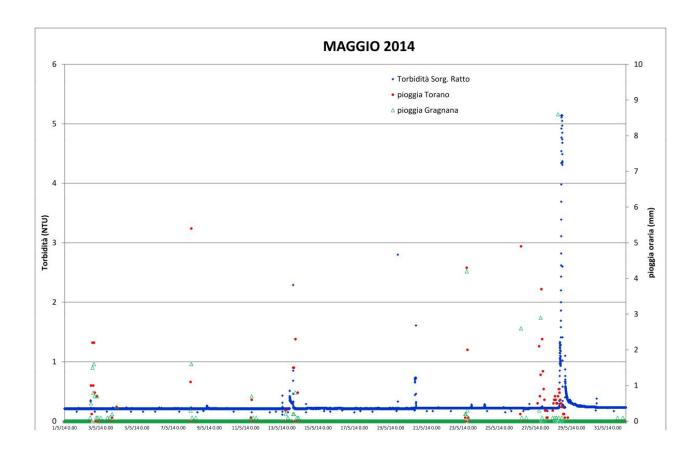
4.1 ATTENDIBILITA' DATI PLUVIOMETRICI

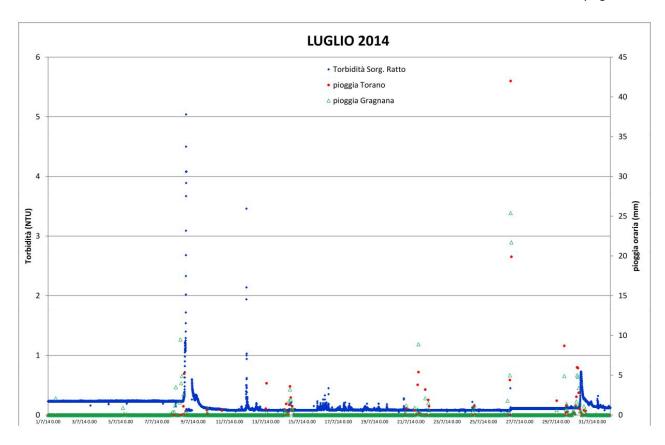
In alcuni grafici sembra non esserci sincronismo fra la registrazione delle piogge e la variazione della torbidità, in quanto spesso si verifica prima l'aumento della torbidità rispetto all'evento meteorico.

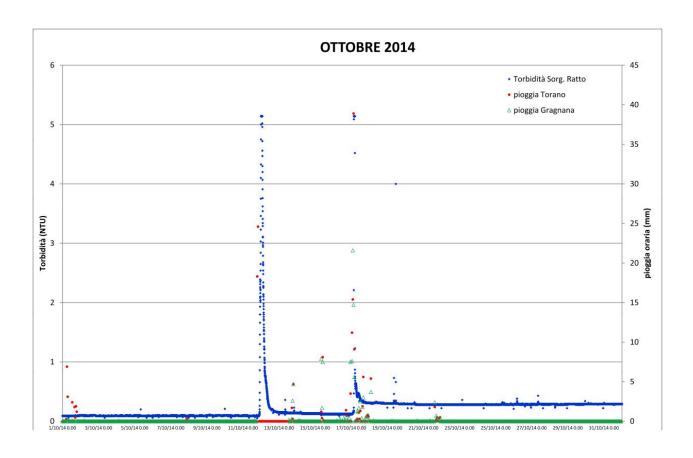
Anche confrontando i valori dell'altro pluviometro presente a Torano, facente parte della rete di rilevamento del **SETTORE IDROLOGICO E GEOLOGICO REGIONALE**, che registra i dati giornalieri di pioggia, sono state notate situazioni anomale (nei dati SIR sono registrate piogge non visibili al pluviometro di GAIA).

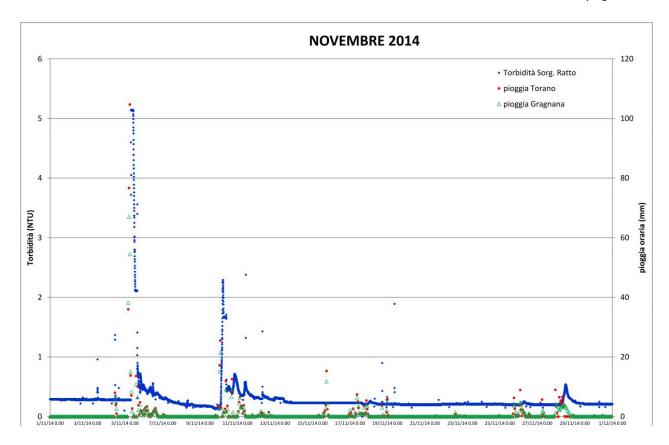
Ad esempio nel grafico torbidità/pioggia del febbraio 2019 si è verificato un evento in cui la torbidità della "Sorgente Ratto" ha superato i 4NTU (02/02); i pluviometri di Torano e Gragnana non evidenziano piogge, mentre il la stazione del SIR registra 111.4mm il giorno 02/02, e modeste precipitazioni nei giorni precedenti.

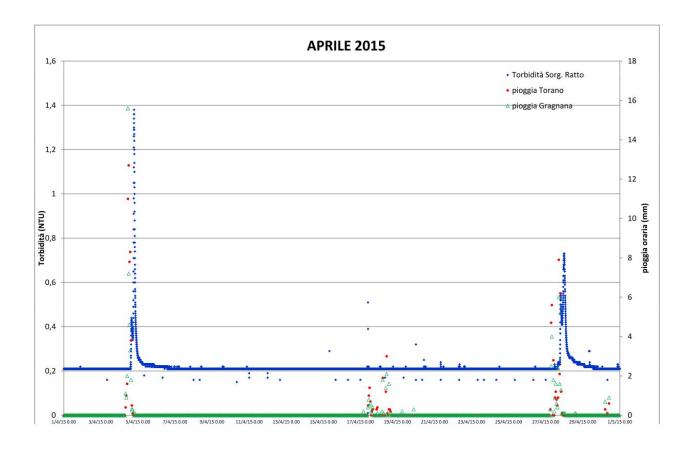


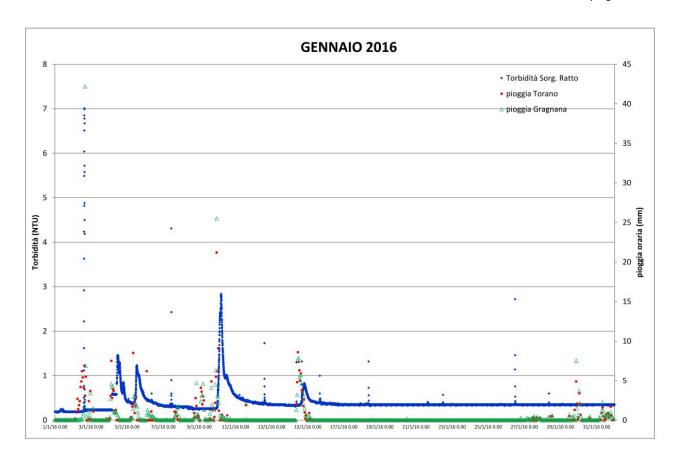

4.2 CONCENTRAZIONE DI TORBIDITA' MASSIMA AMMISSIBILE

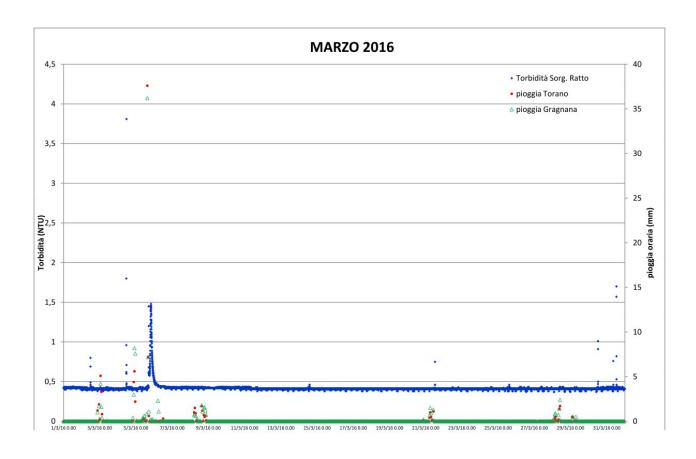

La concentrazione massima ammissibile (CMA) relativamente al parametro torbidità, nel DPR 236/88 era di 4 NTU (Unità Neferometriche di Tordibità), mentre nel D. Lgs n.18 del 23/02/2023 per tale parametro viene indicato, in attuazione della Direttiva (UE) 2020/2184 del Parlamento europeo e del Consiglio del 16 dicembre 2020, concernente la qualità delle acque destinate al consumo umano, "Accettabile per i consumatori, senza variazioni anomale".

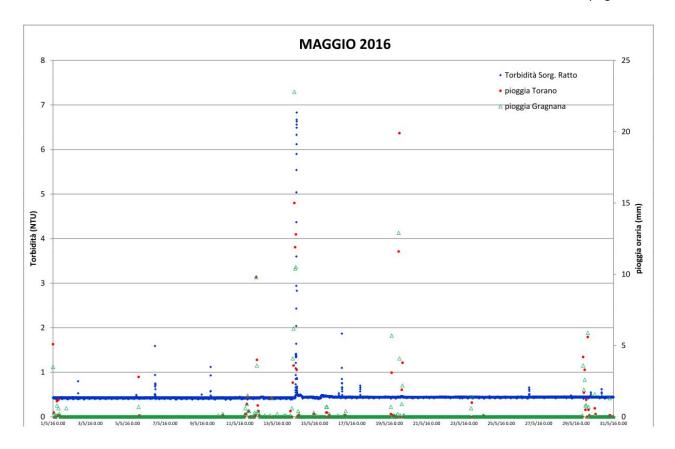

C1. Parametri indicatori

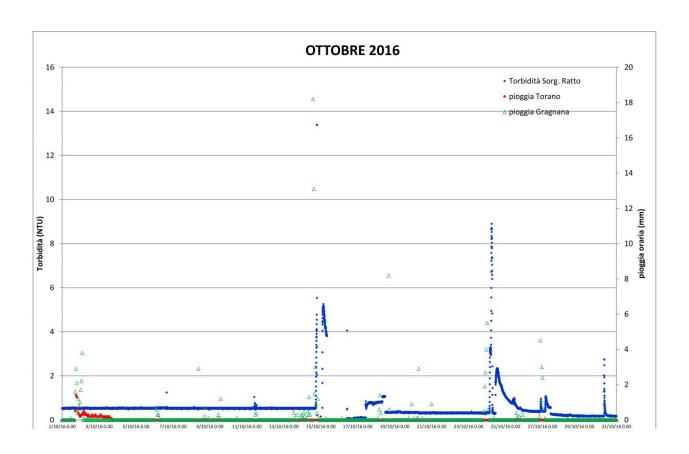

V = 1 = 11 = 11 = 1 = 1 = 1 = 1 = 1 = 1			
Parametro	Valore di parametro	Unità di	Note
		misura	
Torbidità	Accettabile per i		
	consumatori e senza		
	variazioni anomale		

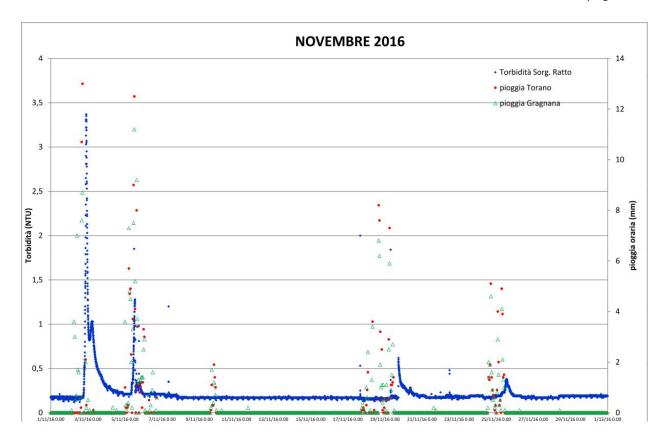


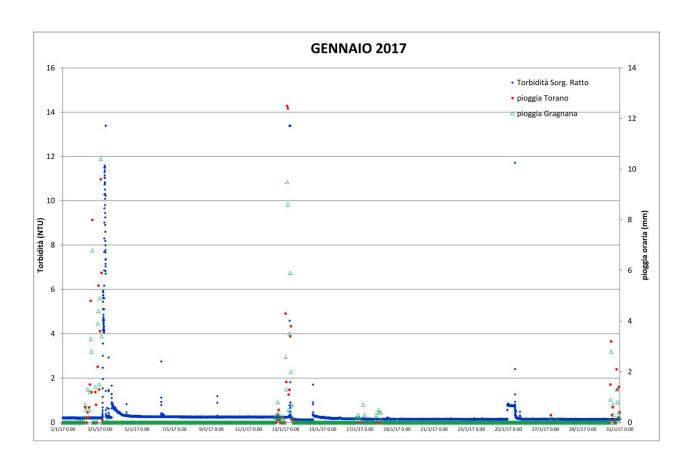


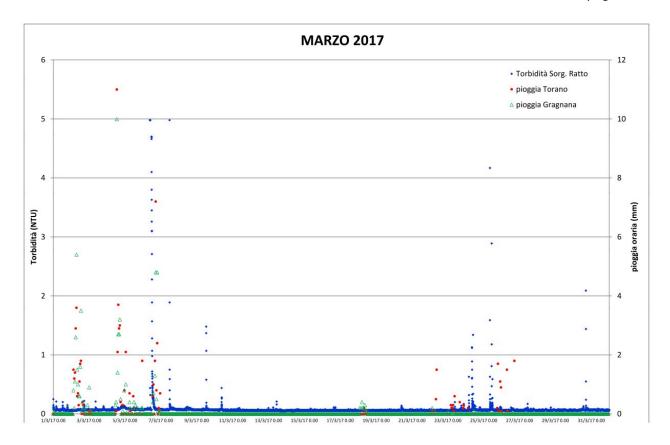


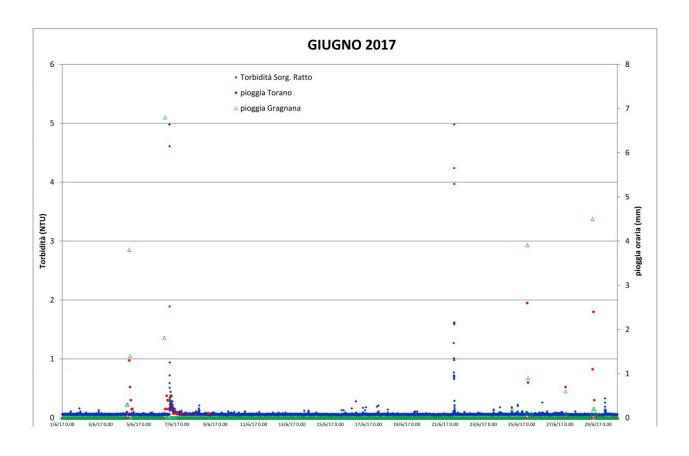


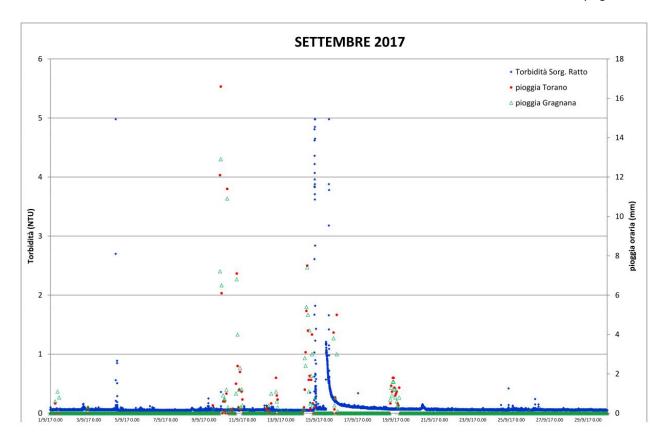


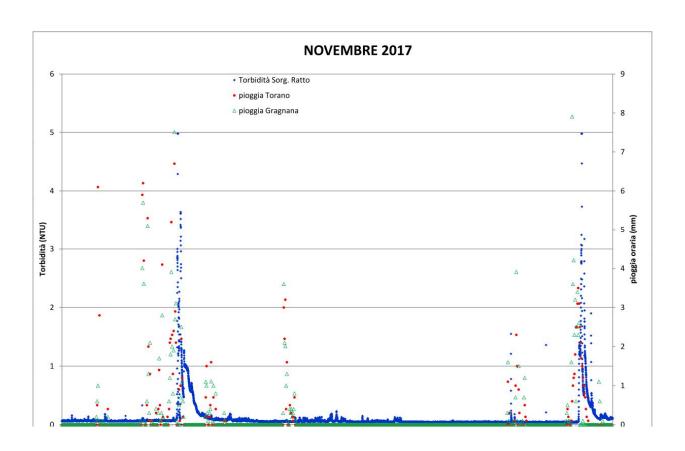


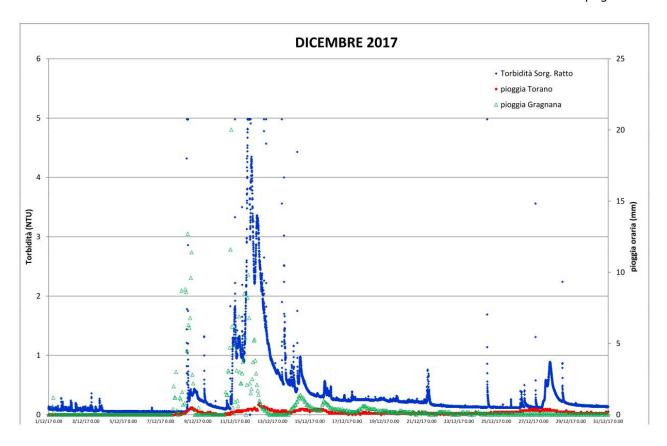


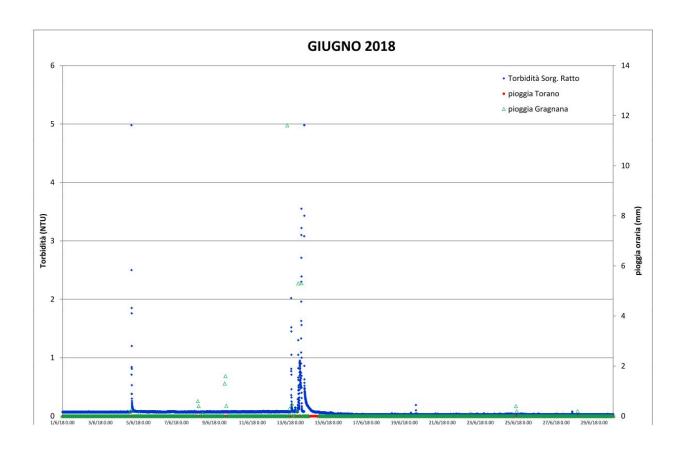


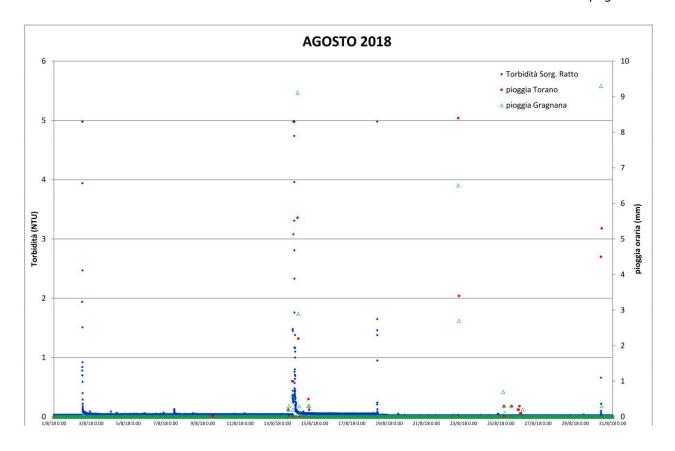


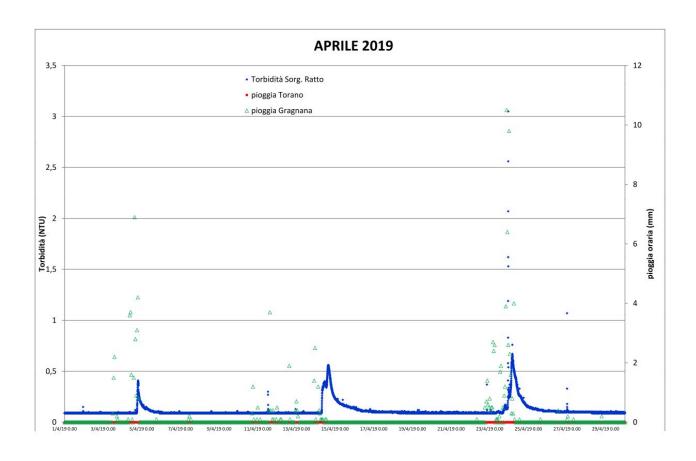


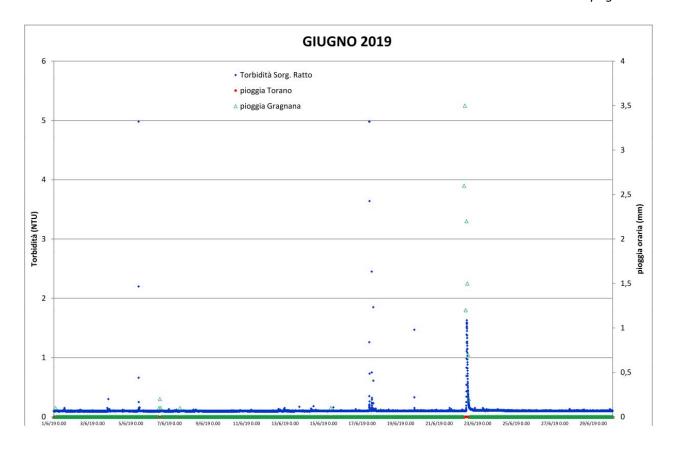


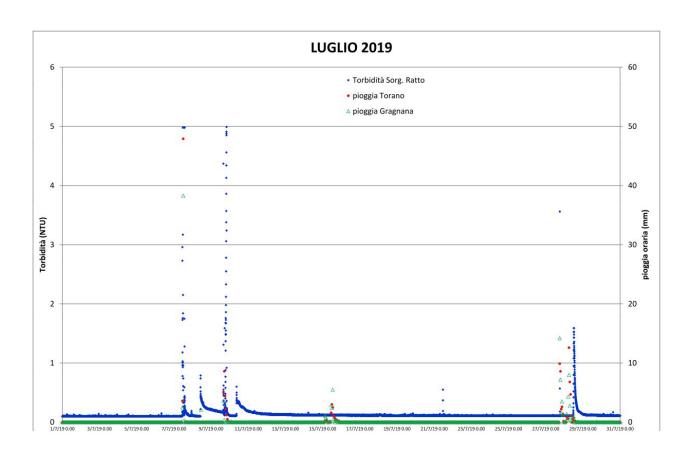


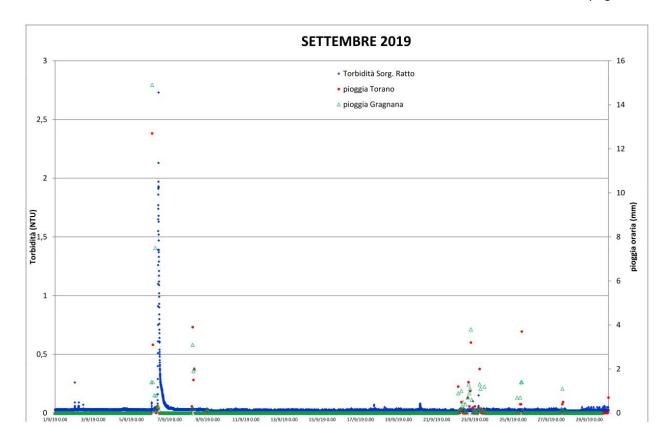


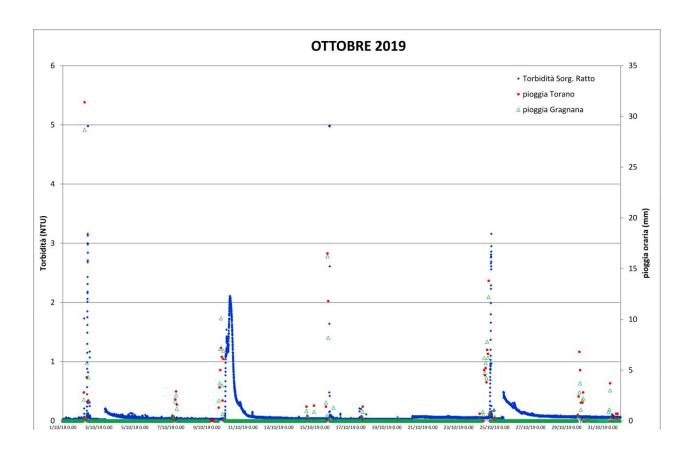


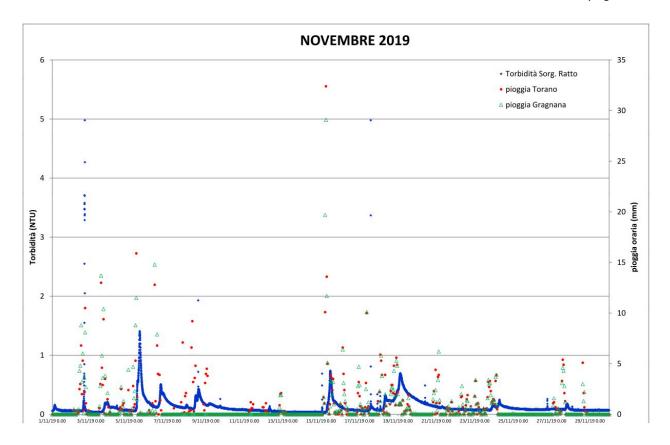


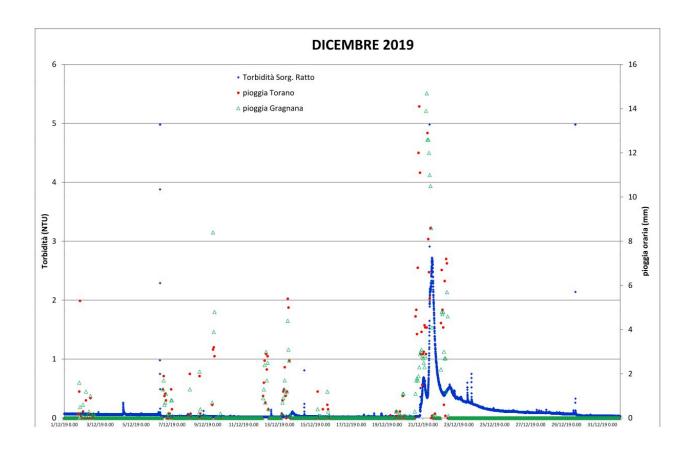


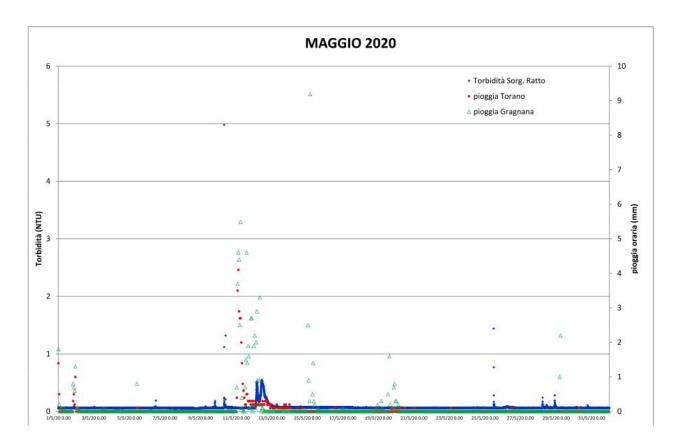


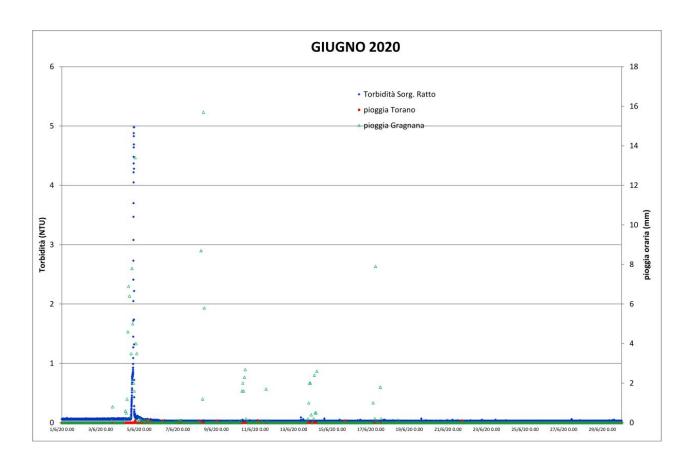


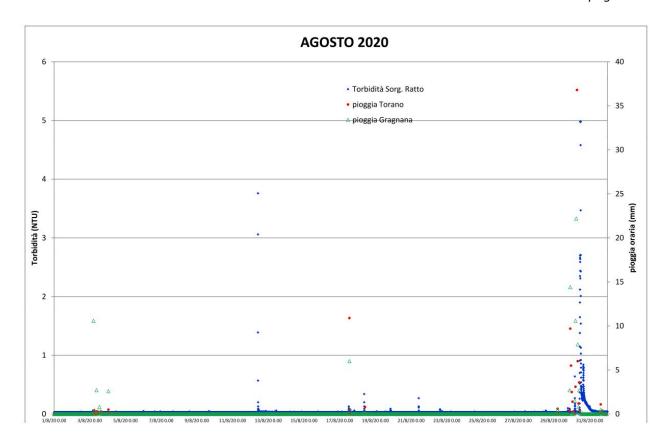


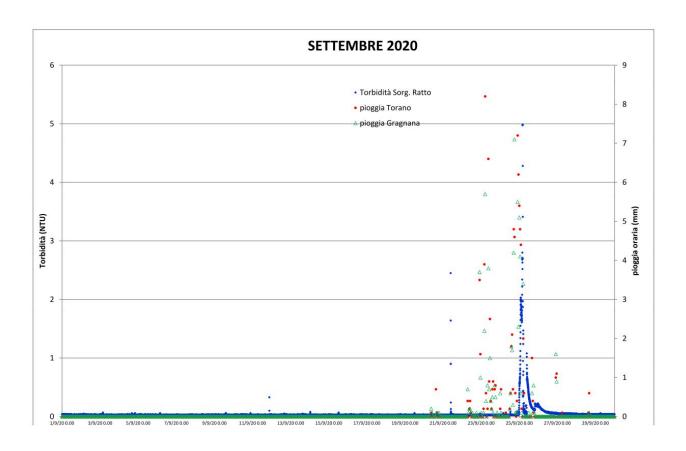


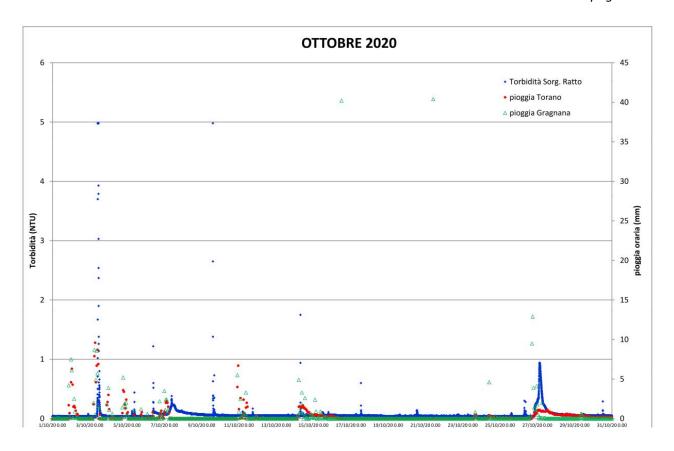


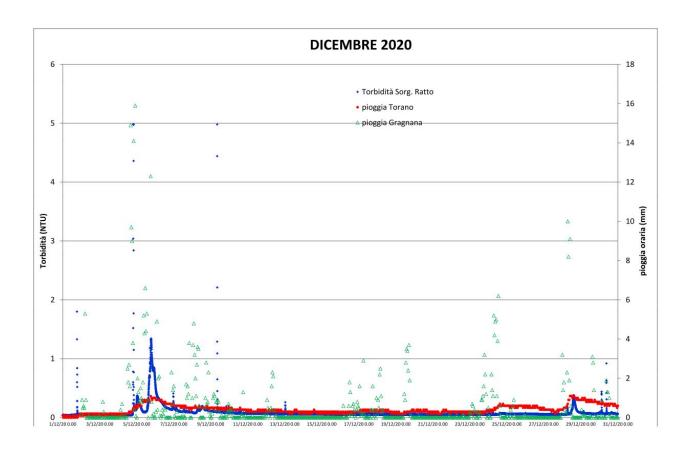




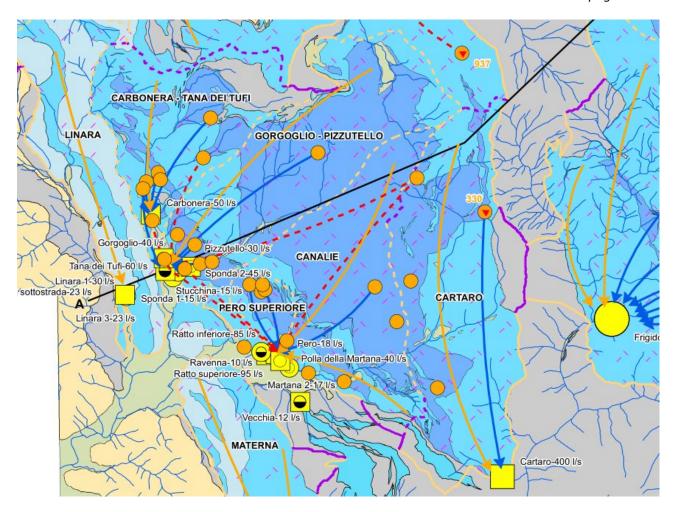




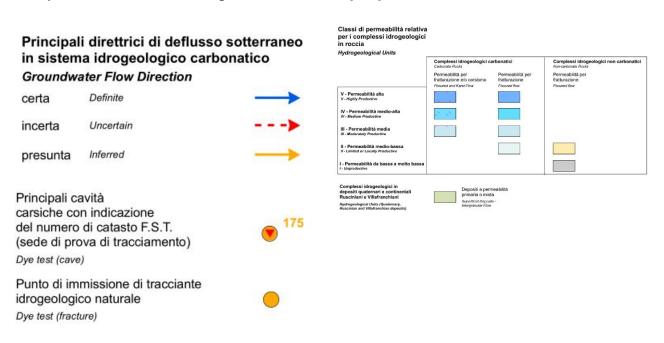




Analizzando tutti i grafici sopra riportati, relativamente ai valori di torbidità rilevati al torbidimetro installato nella "Sorgente Ratto" e le piogge registrate alle Stazioni di Torano e Gragnana, in circa 10 anni di osservazioni sono stati osservati soltanto modesti superamenti del valore di 4NTU, per tempi sempre limitati e, in quasi tutti i casi, dopo intense precipitazioni.


A seguito di colloqui intercorsi con i tecnici di Gaia Spa è emerso che nella sorgente Ratto, nella quale è installato il torbidimetro, esiste un ulteriore dispositivo che, all'aumentare della torbidità sopra il valore soglia di 4NTU, impedisce l'entrata delle acque della Sorgente Martana responsabile, in occasione di eventi meteorici anche non particolarmente intensi o prolungati, di tale fenomeno.

Come si può ben osservare dai grafici allegati, cioè quelli dove si è raggiunto o superato il limite prefissato di 4NTU, la torbidità aumenta solo in occasione di eventi piovosi e, non appena viene esclusa la portata delle acque provenienti dalla Sorgente Martana, il suo effetto si esaurisce in brevissimo tempo, stabilizzandosi nuovamente sui valori di fondo delle acque che confluiscono nella vasca di raccolta ubicata all'interno della sorgente Ratto e da cui vengono immesse in rete.


Purtroppo, al momento, non è possibile stabilire la curva di esaurimento della torbidità nella sorgente Martana, in quanto il torbidimetro è installato all'interno della vasca posta all'interno della sorgente Ratto, prima dell'immissione delle acque in rete.

Pertanto, sulla base dei dati in nostro possesso e da notizie ricevute dai tecnici di GAIA Spa, possiamo affermare che, se escludiamo la Sorgente Martana, per tutte le altre sorgenti del Gruppo Canalie non sono mai stati rilevati fenomeni di intorbidamento, neanche in periodi piovosi.

La spiegazione dell'intorbidamento della Sorgente Martana sembra essere legato, come si può osservare dallo stralcio della successiva cartografia, ad una provenienza del deflusso sotterraneo diversa da quella delle altre sorgenti del Gruppo delle Canalie, dai settori sud-est del bacino idrogeologico.

Carta delle Aree di Alimentazione dei Sistemi Idrogeologici Corpo Idrico Sotterraneo Significativo delle Alpi Apuane

5 - VALUTAZIONE DEGLI IMPATTI SULLE RISORSE IDRICHE SOTTERRANEE

Sulla base di quanto fin qui esposto, che tiene conto di tutti gli studi eseguiti precedentemente e dei grafici ricavati dalle variazioni dei valori di torbidità, in funzione delle precipitazioni registrate alle stazioni pluviometriche di Torano e Gragnana, riscontrate alla sorgente Ratto, dove è in funzione un torbidimetro per il suo monitoraggio in continuo, possono essere sintetizzate le seguenti considerazioni conclusive.

5.1 "STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI CARSICHE SITUATE NEL COMUNE DI CARRARA"

Deflusso di base

Nelle conclusioni di questo studio, per quanto riguarda il deflusso di base delle acque che alimentano il gruppo delle Sorgenti delle Canalie, vengono individuati due principali acquiferi

- un primo, caratterizzato da una quota media d'infiltrazione di circa 1200 m s.l.m., relativo alla sorgente Ravenna
- un secondo, con una quota media d'alimentazione di circa 900 m s.l.m., drenato da tutti gli altri punti del gruppo delle Canalie (Ratto sup., Ratto inf., Ospedale, Pozzo 5 Fontane).

Sempre nel medesimo studio si afferma che l'alimentazione principale di questi sistemi di circolazione è probabilmente da attribuire sia alla parte del bacino del Canal Grande, posto a monte di Fantiscritti, sia alla zona medio alta ed in sinistra idrografica del Canale La Piastra; si afferma inoltre che i sistemi di circolazione che alimentano le Sorgenti delle Canalie risultano meno sensibili agli eventi meteorici rispetto a quelli del gruppo di Torano.

E' quindi evidente che la "Cava Bettogli A n.70" trovandosi a quote inferiori a 600m s.l.m. circa, non può in alcun modo influenzare negativamente il deflusso di base delle sorgenti del Gruppo delle Canalie, in quanto la quota di infiltrazione delle piogge che le alimentano è compresa fra 900 e 1200m s.l.m..

Per quanto riguarda il Gruppo di Torano, si possono individuare due circolazioni di base piuttosto differenziate tra loro che alimentano rispettivamente Carbonera e le due sorgenti Gorgoglio e Pizzutello; nel primo caso le quote medie di alimentazione sono di circa 975 m s.l.m., mentre l'altitudine media del sistema Gorgoglio-Pizzutello si aggira sui 1400 m s.l.m..

Quest'ultima quota coincide in linea di massima con quelle più alte dello spartiacque del bacino idrografico del Carrione e di conseguenza essendo improbabile un'esclusiva alimentazione dalla parte estrema del bacino, per le sorgenti Gorgoglio e Pizzutello bisogna ipotizzare un contributo da parte del retroversante. Per quanto riguarda gli altri punti d'acqua del Gruppo di Torano, il pozzo drena una circolazione alimentata da quote intermedie (1250 m s.l.m.) rispetto a quelle di Carbonera e Gorgoglio-Pizzutello, mentre per Tana dei Tufi le quote medie d'alimentazione risultano simili a quelle di Carbonera.

La "Cava Bettogli A n.70" trovandosi a quote inferiori a 600m s.l.m. circa, non può in alcun modo influenzare negativamente il deflusso di base neanche del delle sorgenti del Gruppo di Torano.

Deflusso superficiale legato alle infiltrazioni delle precipitazioni

Per quanto riguarda l'influenza delle precipitazioni sulle sorgenti, i dati ottenuti hanno consentito di poter affermare che i circuiti rapidi che in occasione di eventi meteorici perturbano, in termini di portata e torbidità, il regolare deflusso alle emergenze, si attivano nella parte medio bassa del bacino e

principalmente nella zona a valle del Calcare selcifero, presente al nucleo della sinclinale di Carrara, tra le quote comprese fra 450 e 200m s.l.m..

Visto che la cava "Bettogli A n.70" è ubicata, in parte, tra queste quote, per verificare se esistono possibili interconnessioni tra le lavorazioni di escavazione eseguite e il gruppo delle sorgenti delle Canalie, sono stati analizzati i dati forniti dalla Soc. GAIA SPA relativi alla torbidità misurata all'interno della sorgente Ratto, in cui confluiscono anche le acque della sorgente Martana, negli anni 2012-aprile 2021, registrati ad intervalli di 3 minuti; tali valori sono stati confrontati con le precipitazioni registrate ai pluviometri di **Torano** e **Gragnana.**

Anche questo studio ha consentito di poter affermare che, se escludiamo la Sorgente Martana, responsabile dei periodici intorbidamenti della sorgente Ratto, per tutte le altre sorgenti del Gruppo Canalie non si hanno notizie di tale fenomeno, neanche in periodi piovosi.

Per quanto riguarda le sorgenti del Gruppo di Torano, le conclusioni dello studio suddetto hanno consentito di poter affermare che:

- i picchi di portata e di torbidità che si osservano in occasione di piogge, sia per Carbonera che per Pizzutello e Gorgoglio sono generati dal rapido apporto di volumi d'acqua infiltratisi da superfici poco estese (se confrontate con gli interi bacini d'alimentazione) che coprono settori immediatamente a monte delle emergenze;
- dall'analisi dei dati di torbidità e di portata delle sorgenti Pizzutello e Gorgoglio è stata evidenziata la possibilità di piccoli contributi a quest'ultime da parte di acque di torrente, probabilmente provenienti dal Canale La Piastra; questi apporti, se presenti, non sono in quantità tali da essere rilevati con le indagini isotopiche;
- i picchi di portata e di torbidità che interessano la sorgente Tana dei Tufi sono dovuti principalmente ad acque che si infiltrano dal Torrente Torano;
- i volumi d'acqua erogati dal pozzo Torano sono del tutto preservati dall'arrivo di acqua di neoinfiltrazione e questo garantisce un costante emungimento di acqua limpida.

Pertanto non si ravvisa la possibilità che le lavorazioni svolte nella cava n.70 possano interferire con i deflussi superficiali che alimentano le sorgenti del Gruppo di Torano.

5.2 "STUDIO IDROGEOLOGICO PROTOTIPALE DEL CORPO IDRICO SIGNIFICATIVO DELL'ACQUIFERO CARBONATICO DELLE ALPI APUANE"

Dalla rivisitazione di questo studio, attribuendo al parametro ly un valore pari a 3, in quanto appare estremamente cautelativo considerare i marmi come rocce totalmente carsiche (valore di ly pari a 1), si è ottenuto per l'area in cui è ubicata la cava in esame, una **vulnerabilità moderata**.

La validità di questa assunzione trova conferma anche dall'approfondimento dello "STUDIO ISOTOPICO-IDRODINAMICO DELLE PRINCIPALI SORGENTI CARSICHE SITUATE NEL COMUNE DI CARRARA", effettuato allo scopo di verificare il comportamento dei contenuti isotopici relativi al deflusso di base (emergenze non perturbate nel breve periodo da acque di neoinfiltrazione) degli acquiferi in esame.

In tale studio si afferma che alle sorgenti delle Canalie e di Torano è stata registrata una generale stabilità dei contenuti in ossigeno-18 ($\delta^{18}O\%$ vs V-SMOW), che evidenzia la presenza di un carsismo non molto sviluppato.

Anche in questo caso, considerando le reali caratteristiche geologiche, geomorfologiche, idrogeologiche, idrologiche e vegetazionali dell'area in oggetto e di un suo significativo intorno, risulta che l'area della cava n.68 rientra tra quelle a <u>vulnerabilità moderata</u>, sicuramente non in grado di destare particolari preoccupazioni legate ad eventuali connessioni tra attività estrattiva e inquinamento delle sorgenti delle Canalie e di Torano.

Come ben descritto nello STUDIO PRELIMINARE AMBIENTALE RELAZIONE TECNICA – VERIFICA ART.48 L.R. 10/2010 allegato alla VARIANTE LOCALIZZATA AL PIANO DI COLTIVAZIONE DELLA CAVA DENOMINATA "BETTOGLI A N.70", redatta dal Dott. Ing. Massimo Gardenato, si è resa necessaria la nuova variante

progettuale, essendo al momento in corso di esaurimento, in alcune aree di cava, i volumi autorizzati ex L.R. 35/15 Det. Dir. N° 598 del 18/04/2019 successivamente prorogata fino al 31/10/2025.

Le coltivazioni si svolgeranno a cielo aperto e prevedono la prosecuzione dei lavori intrapresi nel progetto vigente per quel che concerne le aree a confine con la cava Bettogli B n° 68, mentre non si prevedono modifiche alle coltivazioni autorizzate nell'area a confine con la cava Calocara A n° 102 se non all'interno delle proprie disponibilità.

Le coltivazioni prevedono di proseguire lo sviluppo degli sbassi nel piazzale principale della cava sino a quota 468.5m s.l.m. ca., con la realizzazione di un'apertura tra le quote 476m s.l.m. e 484m s.l.m. verso la strada di accesso comune sottostante previa parziale modifica della stessa nelle zone di disponibilità della proponente medesima e della confinante Bettogli Marmi.

Le aree a confine con la cava n° 102 sono mantenute conformi alla vigente autorizzazione con una serie di gradonature atte a garantirne la sicurezza.

Nell'ambito del progetto è prevista la riorganizzazione di alcune strutture aziendali ed in particolare della cabina elettrica di cava con realizzazione di nuovo punto di consegna ENEL a piede di area di accesso in prossimità della viabilità di ingresso al comprensorio.

Pertanto si può ragionevolmente affermare che le modifiche previste con la VARIANTE LOCALIZZATA AL PIANO DI COLTIVAZIONE DELLA CAVA DENOMINATA "BETTOGLI A" N.70, non possono creare un aggravio della vulnerabilità degli acquiferi, superficiali e profondi, che alimentano le sorgenti delle Canalie e quelle di Torano.

Massa, 19 giugno 2025

Dott. Geol. Carlo Alberto Turba

Dott.ssa Geol. Ilaria Salvatori