

REGIONE TOSCANA Comune di Carrara

BACINO ESTRATTIVO MARMIFERO DI CALOCARA – BETTOGLI

VALUTAZIONE DELLE EMISSIONI DI POLVERE PROVENIENTI DA ATTIVITÀ DI PRODUZIONE, **MANIPOLAZIONE, TRASPORTO, CARICO O** ACCUMULO DI MATERIALI POLVERULENTI

STUDIO METEO DIFFUSIONALE

Riferimento Normativo:

D.Lgs. n.152/06 Parte V Emissioni in atmosfera

ARPA Toscana - Linee guida per la valutazione delle emissioni di polveri provenienti da attività di produzione, manipolazione, trasporto, carico o stoccaggio di materiali polverulenti

OTTOBRE 2018

Rif. File RT-AD0609.AC.AL.AMB.docx

Ecol Studio S.p.A. Sede Legale: Via San Michele del Carso 4 20144 – Milano Sede Operativa:

Dott. Alessandro Caniparoli

INDICE

1	Ρ	REMESSA	4
2	Ν	IORMATIVA VIGENTE E PRESCRIZIONI	6
	2.1	ÎNQUINANTI ANALIZZATI E LIMITI NORMATIVI	6
3	D	DATI GENERALI	7
4	D	DESCRIZIONE DEL CICLO PRODUTTIVO E MODELLO DI SINTESI ATTIVITÀ	9
5	D	OATI DI CALCOLO	11
	5.1	SCOTICO E SBANCAMENTO SUPERFICIALE	13
	5.2	TAGLIO MATERIALI CON CATENA E CON FILO	15
	5.	.2.1 Taglio con filo – fine crushing	15
	5.	.2.2 Taglio con filo – tertiary crushing	16
	5.3	MOVIMENTAZIONE DETRITI	18
	5.4	Vagliatura	20
	5.5		
	5.	.5.1 Movimentazione materiale per formazione cumuli	21
	5.	.5.2 Posizionamento materiale in ravaneto	21
	5.6		
	5.7		
	5.8		
6		RATEO EMISSIVO – RIEPILOGO DATI	
7	R	RECETTORI	32
8	M	MODELLO CALPUFF	34
	8.1	CARATTERISTICHE DI MMS CALPUFF	34
9	D	OATI ORARI METEOROLOGICI UTILIZZATI NEL MODELLO	36
10	V	/ALORI DI QUALITÀ DELL'ARIA	38
11	V	ALUTAZIONE EFFETTO BUILDING DOWNWASH	38
12	D	OATI DI INPUT	39
13	R	RISULTATI SIMULAZIONI SHORT TERM CON SEQUENZE DI DATI ORARI	40
	13.1	1 PM ₁₀	40
	13.2	2 PM _{2.5}	46
14	Р	PROPOSTA PUNTI DI MONITORAGGIO DELLE EMISSIONI PRODOTTE DAL B	ACINO
		STRATTIVO	
15		CONCLUSIONI E PROPOSTA DI INTERVENTI DI MIGLIORAMENTO E MITIGAZIO	
		MIGLIORAMENTO	
	171		

FIGURE E TABELLE

Figura 1 - Bacino di Calocara-Bettogli - Individuazione aree di cava	8
Figura 2 - Ubicazione recettori – vista generale	. 33
Figura 3 – Ubicazione centraline di monitoraggio Arpat Colombarotto e Marina Vecchia	. 33
Figura 4 - stazioni meteo SYNOP ICAO, SIR	. 36
Figura 5 - reticolo di ricostruzione dati meteo e orografici CALMET	. 37
Figura 6 - PM ₁₀ concentrazioni medie annuali contributo solo bacino estrattivo	
Figura 7 - PM₁0 concentrazioni di picco giornaliere contributo solo bacino estrattivo	. 43
Figura 8 - Numero di superamenti del valore di soglia di 50 μg/m³ contributo solo bacino estrattivo	. 44
Figura 9 - PM _{2.5} concentrazioni medie annuali contributo solo bacino estrattivo	. 47
Tabella 1 - valori limite qualità dell'aria PM10	E
Tabella 2 - valori limite qualità dell'aria PM2.5	6
Tabella 3 - elenco cave bacino di Calocara - Bettogli	7
Tabella 4 - Dimensioni superfici e Coordinate Gauss Boaga EPSG3003	7
Tabella 5 - Volumi e quantitativi dei materiali estratti - Bacino di Calocara - Bettogli	. 12
Tabella 6 - riepilogo volumi materiale sottoposti a scotico e sbancamento	
Tabella 7 - Risultati di calcolo rateo emissivo operazione di scotico superficiale e sbancamento (A)	. 14
Tabella 8 - quantitativi annui produzione detriti	. 16
Tabella 9 - Risultati di calcolo rateo emissivo operazione di frantumazione fine – taglio a filo (B)	. 16
Tabella 10 -Risultati di calcolo rateo emissivo operazione di frantumazione terziaria - taglio a catena (B)	. 17
Tabella 11 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti (C)	. 19
Tabella 12 - Risultati di calcolo rateo emissivo operazione di vagliatura (D)	
Tabella 13 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti per formazione cumuli (E)	
Tabella 14 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti per posizionamento in ravaneto	
Tabella 15 - Dettagli di calcolo rateo emissivo erosione vento cumuli	. 23
Tabella 16 - Risultati di calcolo rateo emissivo erosione vento cumuli (F)	. 25
Tabella 17 - Risultati di calcolo rateo dall'operazione di carico (G)	. 26
Tabella 18 – coefficienti particolato transito piste non asfaltate	. 27
Tabella 19 - Dati di calcolo velocità automezzi – transito su strade non asfaltate	
Tabella 20 - Risultati di calcolo rateo del transito mezzi (H)	
Tabella 21 - Riepilogo dati di calcolo Rateo Emissivo	
Tabella 22 - Riepilogo contributi al rateo emissivo delle singole cave	
Tabella 23 - elenco recettori discreti	
Tabella 24 - Dati centraline monitoraggio qualità aria	
Tabella 25 - estensione ed il rateo emissivo espresso in g/s	
Tabella 26 - valori di concentrazione delle PM ₁₀	
Tabella 27 - Valori di concentrazione medie annuali calcolati di PM _{2.5}	. 46

ALLEGATI

REPORT FORNITURA DATI METEOROLOGICI IN FORMATO MMS CALPUFF - MAIND SRL - MILANO

1 PREMESSA

Il presente elaborato costituisce relazione tecnica per la valutazione delle emissioni di polvere provenienti da attività di produzione manipolazione, trasporto, carico o accumulo di materiali polverulenti, svolti all'interno del bacino estrattivo marmifero di Calocara – Bettogli, nel Comune di Carrara.

All'interno del bacino insistono n.7 cave gestite da società distinte le cui attività proprio per la loro locazione sono reputate interconnesse, contribuendo in modo complessivo alla produzione di emissioni polverulente diffuse oggetto del presente studio di valutazione.

Il presente studio si pone l'obiettivo di valutare in modo coordinato le emissioni diffuse generate dalle attività estrattive svolte all'interno del bacino di cava e su base modellistica definire la ricaduta sul territorio e consentire l'individuazione dei punti di massima ricaduta e i tempi necessari per effettuare misure apprezzabili.

La tipologia di attività svolta nel sito, è soggetta a valutazione per verificarne la conformità alla normativa vigente D.Lgs. n. 152/06 e smi - Allegato V alla Parte 5a, Polveri e sostanze organiche liquide, Parte I: Emissioni di polveri provenienti da attività di produzione, manipolazione, trasporto, carico o accumulo di materiali polverulenti.

Il calcolo delle emissioni diffuse è stato elaborato secondo le linee guida redatte dall'Arpa Toscana per la Provincia di Firenze "Linee Guida per la valutazione delle emissioni di polveri provenienti da attività di produzione, manipolazione, trasporto, carico o stoccaggio di materiali polverulenti" e alla documentazione dell'US-EPA AP-42.

Nello specifico, lo studio si basa sull'individuazione dei singoli contributi alla produzione di emissioni delle attività svolte suddivise per singola cava e sommate tra loro per la valutazione del **rateo emissivo totale**.

Il rateo emissivo totale viene calcolato secondo la formula:

Equazione 1

$$E_i(t) = \sum_{l} AD_l(t) * EF_{i,l,m}(t)$$

Dove:

- $i = particolato (PM_{10})$
- I = processo
- m = controllo
- t = periodo di tempo (anno)
- E_i = rateo emissivo (Kg/h) dell'*i-esimo* tipo di articolato
- AD_I = attività relativa all'*I-esimo* processo (materiale lavorato/h)
- EF_{i,l,m} = fattore di emissione

I fattori di emissione e i modelli di calcolo utilizzati nel presente documento sono indicati nel presente capitolo *Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors* - U.S. Enviromental Protection Agency.

I ratei emissivi delle $PM_{2.5}$ sono stati calcolati ipotizzando, cautelativamente, costituiscano una frazione pari al 60% delle PM_{10} .

Alle concentrazioni di PM₁₀ e PM_{2.5} calcolate, è stato aggiunto il contributo dei valori di fondo di qualità dell'aria rilevati dalle centraline di MS-COLMBAROTTO e MS-MARINA-VECCHIA, in tal modo è stato possibile effettuare un confronto diretto con i valori limite previsti dall'attuale normativa.

Per il calcolo del contributo dei valori di fondo è stato impiegato il metodo B (somma dei quadrati) suggerito dall'UK-EA (*UK-EA*, "The Addition of Background Concentrations to Modelled Contributions from Discharge Stacks", Research and Development, Technical Report P361, 2000:

<u>https://www.gov.uk/government/publications/the-additon-of-backgroundconcentrations-to-modelled-contributions-from-discharge-stacks</u>).

I calcoli sono stati eseguiti assegnando come dato input meteorologico un file meteo 3D in formato CALMET 6.42 relativo al 2016, il dettaglio del report è riportato in allegato.

I dati utilizzati sono stati ricostruiti su un'area di dimensione 7 Km x 7 Km con risoluzione 200 m con al centro il bacino estrattivo marmifero di Calocara – Bettogli, nel Comune di Carrara, utilizzando in input i dati rilevati nelle stazioni SYNOP ICAO presenti nell'area.

La ricostruzione tridimensionale del campo meteo orario è stata fatta considerando le caratteristiche orografiche e morfologiche dell'area in esame.

I calcoli sono stati eseguiti su un reticolo di dimensioni 5,6 Km x 5,6 Km con risoluzione orizzontale di 100 m.

Nello studio non è stato considerata la deposizione secca ed umida.

2 NORMATIVA VIGENTE E PRESCRIZIONI

La normativa in materia di tutela dell'aria e delle emissioni in atmosfera, la Parte V del D.lgs. 152/06 e ss.mm.ii., prevede che anche per le emissioni non convogliate e non convogliabili (emissioni diffuse) debba essere richiesta e rilasciata autorizzazione, ai sensi dell'articolo 269.

Per la valutazione delle emissioni diffuse sono state utilizzate le *Linee guida per la valutazione delle* emissioni di polveri provenienti da attività di produzione, manipolazione, trasporto, carico o stoccaggio di materiali polverulenti.

Le linee guida propongono metodi di stima delle emissioni di polveri principalmente basati su dati e modelli dell'US-EPA e, tramite il ricorso a tecniche statistiche e di modellazione della dispersione degli inquinanti in atmosfera, definiscono specifiche soglie emissive per valutare l'impatto sulla qualità dell'aria di queste lavorazioni, per modulare opportunamente le misure di mitigazione, ove necessarie, per disporre l'eventuale monitoraggio nelle aree contermini alle lavorazioni, ovvero prescrivere ulteriori approfondimenti quando l'entità delle emissioni risulti particolarmente elevata anche in relazione alla vicinanza con "punti recettori sensibili".

2.1 INQUINANTI ANALIZZATI E LIMITI NORMATIVI

La normativa italiana in materia di qualità dell'aria (D.Lgs n° 155 del 13-08-2010) indica i seguenti valori limite per gli inquinanti analizzati:

Tabella 1 - valori limite qualità dell'aria PM10

Valore limite di 24 ore	50 μg/m³
per la protezione della salute umana	da non superare più di 35 volte l'anno
Valore limite annuale	
per la protezione della salute umana (anno	40 μg/m³
civile)	

Tabella 2 - valori limite qualità dell'aria PM2.5.

Valore limite annuale	
per la protezione della salute umana (anno	25 μg/m³
civile)	

3 DATI GENERALI

Il bacino estrattivo di Calocara – Bettogli comprende n.7 cave che svolgono le attività di coltivazione condividendo alcune aree comuni e la viabilità di accesso e transito.

Le denominazioni delle aree di cava e le specifiche geometriche sono riportate nelle tabelle seguenti:

Tabella 3 - elenco cave bacino di Calocara - Bettogli

Numerazione cava	Denominazione	Ditta		
cava 66	Poggio Silvestre	Poggio Silvestre Marmi		
cava 67	Bettogli Zona Mossa	Aldo Vanelli Marmi di Giorgio Vanelli		
cava 68	Bettogli B	Bettogli Marmi srl		
cava 70	Bettogli A	VF Marmi		
cava 102	Calocara A	Gemignani e Vanelli srl		
cava 103	Calocara B	F.B. cave srl		
cava 105-106	Calocara C	Società Apueno Mormi erl		
Cava 100-100	Carpevola B	Società Apuana Marmi srl		

Tabella 4 - Dimensioni superfici e Coordinate Gauss Boaga EPSG3003

Numerazione cava	Х	Y	Dimensione (m²)
cava 66	1589174,45	4882852,29	69.308
cava 67	1589358,78	4882907,10	92.201
cava 68	1589672,64	4882896,30	145.525
cava 70	1589548,09	4882766,77	19.286
cava 102	1589453,44	4882444,61	156.056
cava 103	1589646,07	4882478,65	22.031
cava 105-106	1589866,94	4882496,09	191.398

Di seguito si riporta il dettaglio del bacino di estrazione con l'indicazione delle aree occupate dalle relative cave.

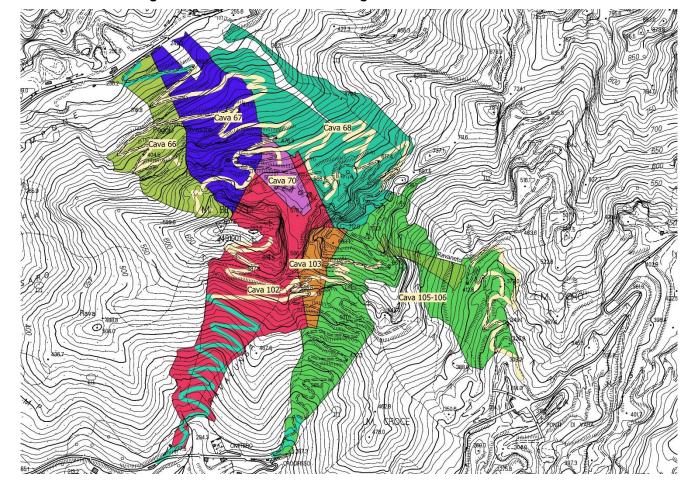


Figura 1 - Bacino di Calocara-Bettogli - Individuazione aree di cava

4 DESCRIZIONE DEL CICLO PRODUTTIVO E MODELLO DI SINTESI ATTIVITÀ

Il materiale derivante delle lavorazioni di cava è frutto delle seguenti fasi più generali fasi lavorative (cicli di lavorazione):

- perforazioni per passaggio filo diamantato (esecuzione con macchina perforatrice idraulica che lavora in presenza di acqua)
- esecuzione di tagli al monte con filo diamantato o catena (lavorazioni condotte con e senza utilizzo di acqua)
- spostamento e/o rovesciamento di porzione di monte su letto di materiale detritico;
- sezionamento in blocchi, semiblocchi (tagli con filo diamantato con utilizzo di acqua)
- sezionamento in blocchi, semiblocchi (tagli con tagliatrice a catena a secco)
- movimentazione e carico di blocchi semiblocchi ed informi mediante pala gommata
- movimentazione e carico materiale detritico su dumper verso area di accumulo temporaneo per le cave Poggio Silvestre, Bettogli Zona Mossa, Bettogli A, Bettogli B, Calocara A, Calocara B
- movimentazione e carico materiale detritico su dumper per riversamento verso sottostante punto di accumulo temporaneo per le cave Calocara C e Carpevola B.
- movimentazione e carico materiale detritico su camion in area accumulo temporaneo (riduzione con martellone idraulico, movimentazione e carico su camion con pala
- gommata)

Le bancate sono isolate al monte mediante tagli concorrenti realizzati passando il filo diamantato in fori predisposti all'uopo e/o con utilizzo di tagliatrice a catena.

In dipendenza delle loro dimensioni sono ulteriormente sezionate al monte oppure rovesciate e nel piazzale di lavorazione vero e proprio dove vengono ridotte, a seconda della qualità merceologica apparente e della fratturazione che presentano, in blocchi commerciabili di varia dimensione. Non vi sono postazioni fisse prevalentemente destinate alla riquadratura in quanto i blocchi vengono generalmente sezionati e riquadrati in prossimità della bancata da cui vengo- no distaccati. Una postazione fissa può essere realizzata temporaneamente per qualche giorno o qualche settimana, ma poi viene sistematicamente adeguata alle necessità di cava laddove è più pratico. I derivati della lavorazione non destinati alla riquadratura vengono allontanati così come prodotto nelle varie dimensioni nelle varie aree di accumulo temporaneo del detrito. Tutte queste operazioni, ivi comprese le operazioni di carico su camion mediante pala gommata, per il trasporto a valle del detrito sono compiute nelle varie aree di accumulo indicate nelle planimetrie di progetto.

L'attività estrattiva all'interno del bacino verrà svolta da ciascuna azienda nei modi e nei tempi già indicati nella documentazione di progetto. Nel presente capitolo si riporterà uno schema delle singole fasi di lavorazione che potrebbero generare emissioni diffuse di tipo polverulento, quantificando il

contributo secondo le formule proposte dalla Linee Guida Arpat e dai documenti di riferimento internazionali AP-42 dell'US-EPA.

Il progetto prevede la coltivazione della cava con formazione di gradoni realizzati in prolungamento con quelli delle cave adiacenti, al fine di realizzare un fronte di discesa coordinato. Saranno praticati nuovi sbassi i quali apriranno nuovi piazzali potenzialmente sfruttabili.

Per i dettagli delle attività svolte in cava, si rimanda alle relazioni di progetto delle singole cave.

Considerando i limiti di una schematizzazione di un ciclo produttivo articolato come quello di una cava di marmo, ai fini della quantificazione del rateo emissivo generato dal bacino di Calocara – Bettogli, è stato definito l'elenco delle singole fasi lavorative che possono fornire un contributo significativo all'emissione di polveri diffuse.

- A. scotico superficiale e sbancamento;
- B. taglio blocchi con catena e con filo (frantumazione secondaria e terziaria);
- **C.** movimentazione detriti;
- **D.** vagliatura detriti;
- **E.** formazione cumuli e posizionamento in ravaneto;
- **F.** erosione dal vento dei materiali accumulati temporaneamente;
- G. carico detriti su mezzi;
- **H.** transito mezzi su strade non asfaltate per trasporto materiali di cava in uscita.

5 DATI DI CALCOLO

Il presente studio si è basato sui dati di progetto forniti dai committenti indicati nei piani di coltivazione coordinati delle cave sopra elencate specificatamente alla fase preliminare della durata di 5 anni.

L'attività **estrattiva** viene svolta su un unico turno di 8 ore giornaliere per 5 giorni settimanali e di un turno di 6 il sabato per un totale di circa **280 giorni/anno**.

Il **trasporto** dei materiali dalla cava viene svolto durante le 8 ore lavorative solamente per 5 giorni settimanali per un totale di circa **250 giorni/anno**.

I quantitativi di materiale estratto sono quelli riportati nel progetto e distribuiti equamente per i 5 anni della durata della fase preliminare e tutto il materiale estratto (blocchi e detriti) sarà allontanato dal bacino di cava senza incremento di accumuli temporanei interni.

Cautelativamente, è stato considerato che l'attività estrattiva verrà svolta interamente all'esterno.

In Tabella 5 si riportano i volumi e i quantitativi di materiali previsti dal progetto.

Tabella 5 - Volumi e quantitativi dei materiali estratti - Bacino di Calocara - Bettogli

	Volumi scavati fase preliminare (5 anni) dati di progetto (m³)	Quantitativi scavati - fase preliminare (5 anni) (Mg)	Volumi scavati annualmente (m³/anno)	Quantitativi scavati annualmente (Mg/anno)	Stima quantitativi blocchi prodotti fase preliminare (5 anni) dati di progetto (Mg)	Stima quantitativi blocchi prodotti annualmente (Mg/anno)	Stima quantitativi detriti prodotti fase preliminare (5 anni) dati di progetto (Mg)	Stima quantitativi detriti prodotti annualmente (Mg/anno)
cava 66	61.770	160.602	12.354	32.120,40	41.700	8.340	118.902	23.780
cava 67	166.013	431.634	33.203	86.326,76	112.100	22.420	319.534	63.907
cava 68	258.510	672.126	51.702	134.425,20	175.000	35.000	497.126	99.425
cava 70	143.100	372.060	28.620	74.412,00	97.000	19.400	275.060	55.012
cava 102	338.475	880.035	67.695	176.007,00	229.000	45.800	651.035	130.207
cava 103	96.000	249.600	19.200	49.920,00	65.000	13.000	184.600	36.920
cava 105-106	216.000	561.600	43.200	112.320,00	146.000	29.200	415.600	83.120
Totale Bacino Calocara- Bettogli	1.279.868	3.327.657	255.973,60	665.531,36	865.800	173.160	2.461.857	492.371

Fattore di conversione materiale $V/M = 2.6 \text{ m}^3/Mg$

5.1 SCOTICO E SBANCAMENTO SUPERFICIALE

L'attività di scotico e sbancamento del materiale superficiale consiste nelle operazioni di rimozione del materiale superficiale delle aree ricoperte da materiale detritico e terroso al di sopra dell'area che sarà interessata dall'escavazione del marmo.

Il fattore emissivo è stato calcolato applicando la formula proposta al paragrafo 1.2 delle linee guida Arpat che richiamano quanto indicato nel documento paragrafo 13.2.3 "Heavy construction operations" dell'AP-42 US-EPA.

L'operazione è quella identificata dal codice SCC 3-05-010-36 *Dragline: Overburden Removal* con un fattore di emissione espresso in *Kg* dato dalla seguente formula:

Equazione 2

$$EF_i(kg/m^3) = \frac{9.3 \times 10^{-4} \times \left(\frac{H}{0.30}\right)^{0.7}}{M^{0.3}}$$

Dove:

- EFi = quantità di PM₁₀ espressa in kg emessa dallo scotico di ciascun m^3 di materiale rimosso:
- H = altezza di caduta espressa in metri;
- M = contenuto percentuale di umidità del materiale (%)

Premesso che la maggior parte delle aree del bacino sono già interessate da estrazione e non sono presenti materiali di copertura superficiale da rimuovere, cautelativamente, si ipotizza che il materiale sottoposto ad attività di scotico sia pari a circa il 50% del detrito prodotto e l'altezza media di caduta del materiale pari a 3m.

- H = 3m
- M = 4.8%

Sostituendo i valori nella Equazione 2 si ottiene:

Equazione 3

$$EF_i(kg/m^3) = \frac{9.3 \times 10^{-4} \times \left(\frac{3}{0.30}\right)^{0.7}}{4.8^{0.3}} = 0.002911$$

Considerando i volumi totali di materiale escavati dalle cave e ipotizzando cautelativamente che il 50% sia sottoposto ad operazione di scotico, per ciascuna cava, si ottengono i quantitativi riportati in Tabella 6.

Tabella 6 - riepilogo volumi materiale sottoposti a scotico e sbancamento

	Volumi scavati fase preliminare (5 anni) dati di progetto (m³)	Volumi scavati annualmente (m³/anno)	Volume materiale sottoposto a scotico (m³/anno)
cava 66	61.770	12.354	6.177
cava 67	166.013	33.203	16.601
cava 68	258.510	51.702	25.851
cava 70	143.100	28.620	14.310
cava 102	338.475	67.695	33.848
cava 103	96.000	19.200	9.600
cava 105-106	216.000	43.200	21.600
Totale Bacino Calocara- Bettogli	1.279.868	255.973,60	127.987

Equazione 4

$$E_i(g/h) = \frac{EF_i(kg/m^3) \times Volume\ materiale(m^3)}{tempo(h)} * 1000(g/kg)$$

Ai fini del calcolo si considera il tempo di lavorazione

- tempo = ore lavorative annuali = 2.240 h

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 4 è riportato nella seguente tabella:

Tabella 7 - Risultati di calcolo rateo emissivo operazione di scotico superficiale e sbancamento (A)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Volume materiale sottoposto a scotico	UM	E _i Emissione media oraria							
					cava 66	m^3	6.177	g/h	8,0							
		SCC 3-05- 010-36	kg/m³	0,002911	cava 67	m^3	16.601	g/h	21,6							
	Scotico superficiale				cava 68	m³	25.851	g/h	33,6							
					0.000044	0.002044	0.002011	0.002044	0.002011	0.002011	0.002044	cava 70	m^3	14.310	g/h	18,6
Α					cava 102	m³	33.848	g/h	44,0							
					cava 103	m ³	9.600	g/h	12,5							
					cava 105-106	m³	21.600	g/h	28,1							

5.2 TAGLIO MATERIALI CON CATENA E CON FILO

L'estrazione dei blocchi prevede l'esecuzione di perforazioni orizzontali e verticali che combinate con tagli paralleli e verticali della tagliatrice a catena dentata, consentono l'introduzione del circuito del filo diamantato, che esegue i tagli necessari, sia piani che posteriori.

Il blocco, quindi, può essere a sua volta riprofilato in loco alle dimensioni volute.

Le operazioni di taglio con filo diamantato vengono eseguite con utilizzo di acqua, mentre quelle con catena, a seguito di adeguamento degli impianti tecnologici, sono eseguite a secco con sistema di aspirazione localizzato.

Le operazioni di taglio del marmo non hanno una fase corrispondente con un'equazione che consenta di calcolare il rateo emissivo della specifica fase, pertanto, si è ritenuto opportuno individuare le operazioni di riduzione volumetrica più affini presenti nelle linee guida Arpat.

Per il taglio con filo è stata associata l'operazione di frantumazione fine (*fine crusching*), all'operazione di taglio con catena, invece, generando il distacco di piccole scaglie, anziché di vere e proprie polveri, viene associato il caso di frantumazione terziaria 5 – 25 mm.

Considerata la difficoltà di quantificare precisamente i quantitativi di materiale sottoposti a taglio, ovvero all'operazione affine di frantumazione secondaria (taglio a filo) e quella di frantumazione terziaria (taglio a catena), nel presente studio si è ipotizzato che l'intero quantitativo di detriti sia sottoposto ad entrambe le operazioni.

5.2.1 TAGLIO CON FILO - FINE CRUSHING

Il fattore emissivo associato al taglio con filo è stato calcolato applicando la formula proposta al paragrafo 1.1 delle linee guida Arpat che richiamano quanto indicato nel documento paragrafo 11.19.2 "Crushed Stone Processing" dell'AP-42 US-EPA.

Il calcolo del contributo generato dall'operazione di taglio (frantumazione) è data dall'equazione:

Equazione 5
$$E_i(g/h) = \frac{EF_i(kg/Mg) \times quantit\`{a} \ materiale(t)}{tempo(h)} * 1000(g/kg)$$

Dove:

- EFi = quantità di PM₁₀ espressa in *kg* emessa dallo frantumazione senza mitigazione di ciascuna tonnellata di materiale = 0,0075 kg/Mg dato bibliografico SCC 3-05-020-05
- tempo = ore lavorative annuali = 2.240 h

- quantità di materiale (Mg) = quantitativi annui di detriti prodotti dalla cava (Tabella 8)

Tabella 8 - quantitativi annui produzione detriti

	Stima quantitativi detriti prodotti annualmente (t/anno)
cava 66	23.780
cava 67	63.907
cava 68	99.425
cava 70	55.012
cava 102	130.207
cava 103	36.920
cava 105-106	83.120
Totale Bacino Calocara-Bettogli	492.371

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 5 è riportato nella seguente tabella:

Tabella 9 - Risultati di calcolo rateo emissivo operazione di frantumazione fine - taglio a filo (B)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Quantità materiale sottoposto a frantumazione	UM	Emissione media oraria													
		SCC 3-05- 020-05	Kg/Mg		cava 66	Mg	23.780	g/h	79,6													
					0.0075	cava 67	Mg	63.907	g/h	214,0												
						cava 68	Mg	99.425	g/h	332,9												
В	Frantumazione			Kg/Mg 0,0075		0,0075	0,0075	0,0075	0,0075	0,0075	0,0075	0,0075	0.0075	0.0075	0,0075	0,0075	0,0075	(a/Ma 0,0075	cava 70	Mg	55.012	g/h
	fine				Kg/ivig							cava 102	Mg	130.207	g/h	436,0						
					cava 103	Mg	36.920	g/h	123,6													
					cava 105- 106	Mg	83.120	g/h	278,3													

5.2.2 TAGLIO CON FILO – TERTIARY CRUSHING

Il fattore emissivo associato al taglio con filo è stato calcolato applicando la formula proposta al paragrafo 1.1 delle linee guida Arpat che richiamano quanto indicato nel documento paragrafo 11.19.2 "Crushed Stone Processing" dell'AP-42 US-EPA.

Il calcolo del contributo generato dall'operazione di taglio (frantumazione) è data dall'Equazione 5 già utilizzata precedentemente.

Dove:

- EFi = quantità di PM₁₀ espressa in kg emessa dalla frantumazione terziaria 5 25mm (tertiary crushing) senza mitigazione di ciascuna tonnellata di materiale = 0,0012 kg/Mg
 dato bibliografico SCC 3-05-020-03
- tempo = ore lavorative annuali = 2.240 h
- quantità di materiale (Mg) = quantitativi annui di detriti prodotti dalla cava (Tabella 8)

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 5 è riportato nella seguente tabella:

Tabella 10 -Risultati di calcolo rateo emissivo operazione di frantumazione terziaria - taglio a catena (B)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Quantità materiale sottoposto a frantumazione	UM	Emissione media oraria (g/h)													
		SCC 3-05- 020-03	Kg/Mg		cava 66	Mg	23.780	g/h	12,7													
						cava 67	Mg	63.907	g/h	34,2												
					cava 68	Mg	99.425	g/h	53,3													
В	Frantumazione			Kg/Mg	Kg/Mg	Ka/Ma	Ka/Ma	Ka/Ma	Ka/Ma	Ka/Ma	Ka/Ma	0,0012	la 0.0012	0.0012	g/Mg 0.0012	0.0012	0.0012	cava 70	Mg	55.012	g/h	29,5
	terziaria					0,0012	0,0012	0,0012	0,0012	0,0012	0,0012		cava 102	Mg	130.207	g/h	69,8					
					cava 103	Mg	36.920	g/h	19,8													
					cava 105- 106	Mg	83.120	g/h	44,5													

5.3 MOVIMENTAZIONE DETRITI

Dopo il taglio/frantumazione, i materiali vengono movimentati per essere sottoposti alle successive operazioni.

Cautelativamente si ipotizza che l'intera quantità di detriti di ciascuna cava sia sottoposta alla movimentazione secondo i dati riportati in Tabella 8.

Il fattore emissivo dovuto dalla movimentazione del materiale per la formazione dei cumuli è stato calcolato secondo la formula proposta al paragrafo 1.3 delle linee guida Arpat e al capitolo 13.2.4 "Aggregate Handling and Storage Piles" del documento AP-42 dell'US-EPA.

Equazione 6

$$EF_i(kg/Mg) = k_i * (0,0016) * \frac{\left(\frac{u}{2,2}\right)^{1,3}}{\left(\frac{M}{2}\right)^{1,4}}$$

Dove:

- $i = particolato (PM_{10})$
- EFi = fattore di emissione
- ki, = coefficiente che dipende dalle dimensioni del particolato (valori tabellari) = 0,35 per
 PM₁₀
- u = velocità del vento = 2,0 m/s (fonte: dati meteo Regione Toscana)
- M = contenuto in percentuale di umidità (%) = 4,8% (stima)

Sostituendo i valori sopra indicati all'Equazione 6 si ottiene il valore del fattore emissivo EF

Equazione 7

$$EF_i(kg/t) = 0.35 * (0.0016) * \frac{\left(\frac{2.0}{2.2}\right)^{1.3}}{\left(\frac{4.8}{2}\right)^{1.4}} = 0.00015$$

Il calcolo del contributo generato dall'operazione di movimentazione (frantumazione) è data dall'Equazione 5 in analogia a quanto già calcolato precedentemente.

Dove:

- EFi = quantità di PM_{10} espressa in kg emessa dalla movimentazione dei cumuli, come calcolato nell'Equazione 7 = 0,0001452 kg/Mg
- tempo = ore lavorative annuali = 2.240 h

- quantità di materiale (Mg) = quantitativi annui di detriti prodotti dalla cava (Tabella 8)

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 5 è riportato nella seguente tabella:

Tabella 11 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti (C)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Quantità materiale detritico sottoposto a movimentazione	UM	Emissione media oraria							
					cava 66	Mg	23.780	g/h	1,5							
		1.3,	Kg/Mg									cava 67	Mg	63.907	g/h	4,1
		relazione (3)			cava 68	Mg	99.425	g/h	6,4							
	Movimentazione	13.2.4 "Aggregate		Kg/Mg	Kg/Mg	Kg/Mg	Kg/Mg	Kg/Mg		cava 70	Mg	55.012	g/h	3,6		
С	detriti	Handling and Storage							Kg/Mg	Kg/Mg	Kg/Mg	(g/Mg 0,00015	cava 102	Mg	130.207	g/h
		Piles" AP-		cava 103	Mg	36.920	g/h	2,4								
					cava 105-106	Mg	83.120	g/h	5,4							

5.4 VAGLIATURA

Tutte le cave prese in esame sottopongono il materiale detritico ad una vagliatura "grossolana" che prevede il passaggio del materiale su una griglia fissa inclinata che lascia cadere al di sotto il materiale più fine e scivolare a lato quello più grossolano.

Tale operazione non può essere esattamente associata a quelle previste dalle linee guida che prendono in esame sistemi più complessi di uno o più vagli vibranti, tuttavia, cautelativamente, si considera anche questo processo come se venisse eseguito su tutti i materiali che non siano blocchi. Il fattore emissivo previsto dalle linee guida Arpat per l'operazione di vagliatura è riportato nella tabella 2 delle linee guida Arpat *Processi relativi alle attività di frantumazione, macinazione e agglomerazione, fattori di emissione per il PM10* riprendendo quanto indicato alla tabella 11.9.2-1 del documento AP-42 dell'US-EPA.

Nel caso specifico, nonostante il materiale fosse parzialmente umido, cautelativamente, è stato preso in esame il fattore di emissione senza abbattimento di cui al codice SCC 3-05-020-02, 03.

Il calcolo del rateo emissivo generato dall'operazione di vagliatura si calcola applicando l'Equazione 5, dove:

- EFi = quantità di PM₁₀ espressa in kg emessa dalla vagliatura del materiale, SCC 3-05-020-02, 03 = 0,0043 kg/Mg
- tempo = ore lavorative annuali = 2.240 h
- quantità di materiale (Mg) = quantitativi annui di detriti prodotti dalla cava (Tabella 8)

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 5 è riportato nella seguente tabella:

Tabella 12 - Risultati di calcolo rateo emissivo operazione di vagliatura (D)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	ИМ	Quantità materiale vagliato	ИМ	Emissione media oraria							
				(cava 66	Mg	23.780	g/h	45,6							
			Kg/Mg									cava 67	Mg	63.907	g/h	122,7
		SCC 3-05-		0.0043		cava 68	Mg	99.425	g/h	190,9						
D	Vagliatura				cava 70	Mg	55.012	g/h	105,6							
	detriti	020-02, 03		3 3	3 3		0 0	0 0		3. 3		cava 102	Mg	130.207	g/h	250,0
					cava 103	Mg	36.920	g/h	70,9							
					cava 105-106	Mg	83.120	g/h	159,6							

5.5 FORMAZIONE CUMULI E POSIZIONAMENTO IN RAVANETO

Successivamente alle operazioni di vagliatura, il materiale detritico viene disposto in cumuli ubicati in aree dedicate per essere successivamente caricati su automezzi e allontanati dal sito.

Per la cava 15-106, invece, il materiale viene posizionato su ravaneto, pertanto, tale fase è stata specificatamente considerata.

5.5.1 MOVIMENTAZIONE MATERIALE PER FORMAZIONE CUMULI

Il fattore emissivo dovuto dalla movimentazione del materiale per la formazione dei cumuli è stato calcolato secondo la formula proposta al paragrafo 1.3, delle linee guida Arpat e al capitolo 13.2.4 "Aggregate Handling and Storage Piles" del documento AP-42 dell'US-EPA.

Per tutte le cave, ad eccezione della cava 105-106, si rimanda al calcolo già riportato al paragrafo 5.3-Movimentazione detriti, indicando solamente la tabella riepilogativa dei risultati del rateo emissivo della fase specifica.

Tabella 13 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti per formazione cumuli (E)

	Operazione	Riferimento	υм	Fattore di emissione	Cava	υм	Quantità materiale detritico sottoposto a movimentazione	UM	Emissione media oraria							
		1.3,			cava 66	Mg	23.780	g/h	1,5							
		relazione (3)	Kg/Mg 0,00015		cava 67	Mg	63.907	g/h	4,1							
	Movimentazione	13.2.4		Kg/Mg	Kg/Mg		cava 68	Mg	99.425	g/h	6,4					
E	detriti per formazione	"Aggregate Handling				Kg/Mg	Kg/Mg	Kg/Mg	Kg/Mg 0,000 ′	Kg/Mg	Kg/Mg 0,00015	cava 70	Mg	55.012	g/h	3,6
	cumuli	and Storage Piles" AP-									cava 102	Mg	130.207	g/h	8,4	
		42		cava 103	Mg	36.920	g/h	2,4								

5.5.2 POSIZIONAMENTO MATERIALE IN RAVANETO

Per la sola cava 105-106, il materiale detritico non viene movimentato per la formazione di cumuli, bensì posizionato in ravaneto.

L'attività di posizionamento in ravaneto è assimilabile a quella di sbancamento già valutata al paragrafo 5.1-Scotico e sbancamento superficiale.

Il fattore emissivo è stato calcolato applicando la formula proposta al paragrafo 1.2 delle linee guida Arpat che richiamano quanto indicato nel documento paragrafo 13.2.3 "Heavy construction operations" dell'AP-42 US-EPA.

L'operazione è quella identificata dal codice SCC 3-05-010-36 *Dragline: Overburden Removal* con un fattore di emissione espresso in *Kg* dato dalla Equazione 2.

Dove:

- EFi = quantità di PM₁₀ espressa in kg emessa dallo scotico di ciascun m^3 di materiale rimosso:
- H = altezza di caduta espressa in metri;
- M = contenuto percentuale di umidità del materiale (%)

Si ipotizza che l'intero quantitativo espresso in m³ sia posizionato nel ravaneto. L'altezza del salto del ravaneto è pari a circa 200m e lo stesso viene costantemente bagnato da un sistema di irrigazione. Dalle ipotesi assunte sono considerati i seguenti valori:

- H = 200m
- M = 30%

Sostituendo i valori nella Equazione 2 si ottiene:

Equazione 8

$$EF_i(kg/m^3) = \frac{9.3 \times 10^{-4} \times \left(\frac{200}{0.30}\right)^{0.7}}{50^{0.3}} = 0.0318$$

Applicando i valori calcolati all'Equazione 4, dove il tempo di esercizio è sempre 2.240 h/anno si ottiene il dato come indicato nella Tabella 14.

Tabella 14 - Risultati di calcolo rateo emissivo operazione di movimentazione detriti per posizionamento in ravaneto (F)

	Operazione F	Riferimento	UM	Fattore di emissione	Cava	UM	Volume materiale sottoposto a scotico	UM	E _i Emissione media oraria
F	·	SCC 3-05- 010-36	kg/m³	0,0318	cava 105- 106	m ³	216.112	g/h	3.065,6

5.6 ACCUMULI TEMPORANEI MATERIALI

Il materiale detritico, prima di essere allontanato dal sito, viene raccolto in cumuli. Nel presente studio si ipotizza che l'intero quantitativo di materiale detritico prodotto nell'anno sia raccolto in cumuli, quindi, allontanato dal sito.

La presente fase è calcolata in modo univoco per tutte le cave.

Il calcolo del fattore dell'erosione dei cumuli da parte del vento è stato elaborato sulla base delle formule proposte al paragrafo 1.4, delle Linee guida Arpat e al paragrafo 13.2.5 "*industrial Wind Erosion*" del documento AP-42 dell'US-EPA.

Equazione 9

$$E_i(kg/h) = EF_i * a * movh$$

Dove:

- $i = particolato (PM_{10})$
- EF_i (kg/m²) = fattore di emissione areale dell'*i*-esimo tipo di particolato

 $EFi = 0.0000079 (kg/m^2)$ per cumuli alti H/D>0.2

 $EFi = 0.00025 (kg/m^2)$ per cumuli bassi H/D≤0,2

- a = superficie dell'area movimentata in m²
- movh = numero di movimentazioni ora

L'ipotesi di calcolo prevede che i cumuli presenti in sito siano tutti di eguale dimensione e che siano allontanati da ciascuna cava con la stessa frequenza di produzione nell'arco dell'anno.

I cumuli sono stimati di forma conica con diametro pari a 14m e altezza pari a 5m.

Il numero di movimentazioni orarie, quindi, è calcolato ipotizzando che l'intero quantitativo di detrito prodotto in un anno e presente in cumuli di pari dimensioni sia allontanato interamente, indipendentemente dal numero di cumuli che vengono formati, poiché allontanati nello stesso arco temporale.

Tabella 15 - Dettagli di calcolo rateo emissivo erosione vento cumuli

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
20112 66	tonnellate/cumulo	666,73	
cava 66	tonnellate/anno	23780,4	
	ore lavorative anno	2240	
	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	

Cumulo	Descrizione	Dato	Nota
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	3,0	
	Ei (kg/h)	0,0045	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
	tonnellate/cumulo	666,73	
	tonnellate/anno	63906,76	
cava 67	ore lavorative anno	2240	
Cava 07	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	8,1	
	Ei (kg/h)	0,0121	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
	tonnellate/cumulo	666,73	
	tonnellate/anno	99425,2	
cava 68	ore lavorative anno	2240	
Cava 00	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	12,6	
	Ei (kg/h)	0,0188	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
	tonnellate/cumulo	666,73	
	tonnellate/anno	55012	
cava 70	ore lavorative anno	2240	
Cava 70	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	7,0	
	Ei (kg/h)	0,0104	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
2012 400	tonnellate/cumulo	666,73	
cava 102	tonnellate/anno	130207	
	ore lavorative anno	2240	
	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	

Cumulo	Descrizione	Dato	Nota
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	16,5	
	Ei (kg/h)	0,0246	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
	tonnellate/cumulo	666,73	
	tonnellate/anno	36920	
cava 103	ore lavorative anno	2240	
Cava 103	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	4,7	
	Ei (kg/h)	0,0070	

Cumulo	Descrizione	Dato	Nota
	diametro del cumulo (m)	14	
	altezza del cumulo (m)	5	
	volume cumulo (m³)	256,43	
	tonnellate/cumulo	666,73	
	tonnellate/anno	83120	
cava 105-	ore lavorative anno	2240	
106	EFi (kg/m²)	0,0000079	cumulo alto H/D>0,2
	Superficie oraria movimentata - a - (m²)	189,1	
	movh - numero movimentazioni ora - calcolo effettuato sulla movimentazione media annua della superficie laterale per l'intero materiale diviso le ore lavorative annuali	10,5	
	Ei (kg/h)	0,0157	

Tabella 16 - Risultati di calcolo rateo emissivo erosione vento cumuli (F)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Quantità	UM	Emissione media oraria (g/h)
					cava 66	movh x a	569	g/h	4,5
		1.4, relazione (5) 13.2.5 "industrial	kg/m² cumuli	0,0000079	cava 67	movh x a	1.530	g/h	12,1
					cava 68	movh x a	2.380	g/h	18,8
F	Accumulo				cava 70	movh x a	1.317	g/h	10,4
	temporaneo	Wind	alti		cava 102	movh x a	3.117	g/h	24,6
		Erosion" AP-42			cava 103	movh x a	884	g/h	7,0
					cava 105-106	movh x a	1.990	g/h	15,7

5.7 CARICO DETRITI SU AUTOMEZZI

Il fattore emissivo relativo al carico del materiale sui camion è stato definito secondo quanto indicato dal codice SCC 3-05-020-31 "Truck unloading" relativo al "Fragmented Stone".

Il calcolo è stato effettuato considerando il carico del solo materiale detritico, escludendo i blocchi che per loro stessa natura non spolverano.

Considerato che le operazioni di carico sui mezzi sono associate al trasporto su strada, le ore annue di lavoro sono 2.000 h in quanto la circolazione dei mezzi è prevista dal lunedì al venerdì per un totale di giorni stimato pari a 250 g/anno.

Il calcolo del rateo emissivo generato dall'operazione di vagliatura si calcola applicando l'Equazione 5, dove:

- EFi = quantità di PM_{10} espressa in kg emessa dall'operazione di carico del materiale, SCC 3-05-020-31 = 0,000008 kg/Mg
- tempo = ore lavorative annuali = 2.000 h
- quantità di materiale (Mg) = quantitativi annui di detriti prodotti dalla cava (Tabella 8)

Per ciascuna cava il fattore di emissione calcolato applicando l'Equazione 5 è riportato nella seguente tabella:

Tabella 17 - Risultati di calcolo rateo dall'operazione di carico (G)

	Operazione	Riferimento	UM	Fattore di emissione	Cava	υм	Quantità	UM	Emissione media oraria (g/h)
					cava 66	Mg	23.780	g/h	0,1
		SCC 3-05- 020-31	Kg/Mg	0,000008	cava 67	Mg	63.907	g/h	0,3
					cava 68	Mg	99.425	g/h	0,4
_	Carico				cava 70	Mg	55.012	g/h	0,2
G	detriti su automezzi				cava 102	Mg	130.207	g/h	0,5
					cava 103	Mg	36.920	g/h	0,1
					cava 105-106	Mg	83.120	g/h	0,3

5.8 TRANSITO MEZZI SU PISTE NON ASFALTATE

I materiali in uscita dal bacino estrattivo verranno tutti trasportati da automezzi che devono percorre piste pavimentate e non pavimentate, che sono riportate e specificate nelle planimetrie di progetto. Il fattore emissivo è stato calcolato applicando la formula proposta al paragrafo 1.5 delle linee guida Arpat che richiamano quanto indicato nel documento AP-42 dell'US-EPA.

L'equazione applicata è:

Equazione 10

$$EF_i(kg/km) = k_i * \left(\frac{s}{12}\right)^{a_i} * \left(\frac{W}{3}\right)^{b_i}$$

Dove:

- $i = particolato (PM_{10}) = 0,423$
- s = contenuto in limo del suolo in percentuale in massa (%) = 8,4%
- W = peso medio del veicolo = 25 Mg (valore medio tra ingresso del mezzo vuoto e uscita carico)
- ki, ai e bi sono coefficienti che variano a seconda del tipo di particolato ed i cui valori sono forniti dalla tabella:

Tabella 18 – coefficienti particolato transito piste non asfaltate

	Ki	ai	bi
PTS	1,38	0,7	0,45
PM ₁₀	0,423	0,9	0,45
PM _{2,5}	0,0423	0,9	0,45

Considerando la tipologia di materiali trattati, sono stati attribuiti ai coefficienti i valori relativi alle PM₁₀.

Sostituendo i valori di cui sopra all'Equazione 10, otteniamo:

Equazione 11

$$EF_i(kg/km) = 0.423 * \left(\frac{8.4}{12}\right)^{0.9} * \left(\frac{25}{3}\right)^{0.45} = 0.7967$$

Considerando l'effetto delle precipitazioni ordinarie annuali (n.110 giorni/anno) e l'effetto della bagnatura delle piste (n.140 giorni/anno), è ragionevole ipotizzare che il valore del fattore si possa abbattere del 68,5%, rappresentativo del periodo durante il quale le piste sono mantenute umide.

Equazione 12

$$EF_i(kg/km)corretto = 31.5\%diEF_i(kg/km) = 0.7967 * 0.315 = 0.251(kg/km)$$

Il fattore emissivo, quindi, andrà moltiplicato per la velocità di transito dei mezzi sulle piste non asfaltate secondo l'equazione

Equazione 13

 $E_i(g/h) = EF_i(kg/km) \times velocità transito (km/h) \times 1000(g/kg)$

Dati di input calcolo velocità di transito

Il calcolo della velocità di transito degli automezzi è stato effettuato partendo dai quantitativi di materiale che vengono trasportati dagli automezzi e dal loro peso medio.

Il peso medio del veicolo è stato calcolato facendo una stima di tutti i mezzi in ingresso in ciascuna cava e abbiano trasportato l'intero quantitativo di materiale escavato (blocchi e detriti) percorrendo la medesima strada in ingresso ed in uscita.

Distribuendo tale attività su tutto l'anno, per ciascuna cava, a seconda dei quantitativi di materiale da allontanare sono stati stimati il numero di mezzi necessari e la loro velocità di transito.

Tabella 19 - Dati di calcolo velocità automezzi - transito su strade non asfaltate

	UM	cava 66	cava 67	cava 68	cava 70	cava 102	cava 103	cava 105-106
tonnellate annue scavate e trasportate	Mg	32.120,4	86.326,76	134.425,2	74.412	176.007	49.920	112.320
Materiale trasportato per singolo automezzo	Mg				30			
Peso automezzo vuoto	Mg				10			
Peso medio automezzo (vuoto/carico)	Mg	25						
Numero transiti camion trasporto materiale - ingresso+uscita	transiti/giorno	10	24	36	20	48	14	30
Lunghezza tragitto (km)	km	1,5	0,8	1,6	1,2	0,9	0,5	1
Ore lavorative (trasporto)	ore/anno				2.000			
Numero corse/ora	corse/h	1,25	3	4,5	2,5	6	1,75	3,75
Lunghezza tragitto complessiva giornaliera (km/giorno)	km/giorno	15	19,2	57,6	24	43,2	7	30
Velocità media giornaliera	km/h	1,875	2,4	7,2	3	5,4	0,875	3,75

Applicando i valori calcolati all'Equazione 13, per ciascuna cava otteniamo i risultati indicati in tabella.

Tabella 20 - Risultati di calcolo rateo del transito mezzi (H)

	Operazione	Riferimento	υм	Fattore di emissione	Cava	υм	Velocità media automezzi in transito	υм	Emissione media oraria (g/h)
	Transito	1.5,	kg/km 0,251		cava 66	km/h	1,88	g/h	470,7
н	automezzi su piste non asfaltate	relazione (6) 13.2.2 "Unpaved		0,251	cava 67	km/h	2,40	g/h	602,4
					cava 68	km/h	7,20	g/h	1.807,3

Operazione	Riferimento	UM	Fattore di emissione	Cava	UM	Velocità media automezzi in transito	UM	Emissione media oraria (g/h)
	Road" AP- 42			cava 70	km/h	3,00	g/h	753,0
	42			cava 102	km/h	5,40	g/h	1.355,5
				cava 103	km/h	0,88	g/h	219,6
				cava 105-106	km/h	3,75	g/h	941,3

6 RATEO EMISSIVO – RIEPILOGO DATI

I dati calcolati nel capitolo precedente sono riportati in un'unica tabella riepilogativa che indica il valore del rateo emissivo totale generato dall'intera attività estrattiva nel bacino di Calocara – Bettogli.

Per ciascuna cava, quindi, è stato calcolato il singolo contributo generato dall'intera attività e riportato nella Tabella 22 - Riepilogo contributi al rateo emissivo delle singole cave

Tabella 21 - Riepilogo dati di calcolo Rateo Emissivo

	Operazione	Riferimento	Descrizione operazione ed eventuali sistemi di mitigazione	UM	Fattore di emissione	Cava	UM	Quantità	UM	Emissione media oraria (g/h)
						cava 66	m³	6.177	g/h	8,0
						cava 67	m³	16.601	g/h	21,6
			Ipotizzato cautelativamente che il			cava 68	m³	25.851	g/h	33,6
Α	Scotico superficiale	SCC 3-05-010-36	materiale sottoposto a scotico	kg/m³	0,002911	cava 70	m ³	14.310	g/h	18,6
			superficiale fosse il 50% dei volumi scavati		,	cava 102	m ³	33.848	g/h	44,0
			Scavali			cava 103	m ³	9.600	g/h	12,5
						cava 105-106	m ³	21.600	g/h	28,1
						cava 66	Mg	23.780	g/h	79,6
			Il taglio con filo (frantumazione			cava 67	Mg	63.907	g/h	214,0
			secondaria) è calcolato sull'intero			cava 68	Mg	99.425	g/h	332,9
	Frantumazione fine	SCC 3-05-020-05	quantitativo di detriti. Il fattore è stato considerato con sistema di mitigazione	Kg/Mg	0,0075	cava 70	Mg	55.012	g/h	184,2
			per lo svolgimento delle operazioni ad			cava 102	Mg	130.207	g/h	436,0
			acqua			cava 103	Mg	36.920	g/h	123,6
В			•			cava 105-106	Mg	83.120	g/h	278,3
			Il taglio con catena (frantumazione	Ka/Ma		cava 66	Mg	23.780	g/h	12,7
						cava 67	Mg	63.907	g/h	34,2
			terziaria) è calcolato sull'intero quantitativo di detriti. Il fattore è stato			cava 68	Mg	99.425	g/h	53,3
	Frantumazione terziaria	SCC 3-05-020-03	considerato con sistema di mitigazione		0,0012	cava 70	Mg	55.012	g/h	29,5
			per lo svolgimento delle operazioni ad			cava 102	Mg	130.207	g/h	69,8
			acqua e/o con aspiratori localizzati			cava 103	Mg	36.920	g/h	19,8
						cava 105-106	Mg	83.120	g/h	44,5
						cava 66	Mg	23.780	g/h	1,5
						cava 67	Mg	63.907	g/h	4,1
		1.3, relazione (3) 13.2.4	La movimentazione verrà effettuata con			cava 68	Mg	99.425	g/h	6,4
С	Movimentazione detriti	"Aggregate Handling and	ribaltamento graduale del materiale	Kg/Mg	0,00015	cava 70	Mg	55.012	g/h	3,6
		Storage Piles" AP-42				cava 102	Mg	130.207	g/h	8,4
						cava 103	Mg	36.920	g/h	2,4
						cava 105-106	Mg	83.120	g/h	5,4
						cava 66	Mg	23.780	g/h	45,6
			L'operazione di vagliatura consiste nel			cava 67 cava 68	Mg Mg	63.907 99.425	g/h g/h	122,7 190,9
D	Vagliatura dotriti	SCC 3-05-020-02, 03	posizionamento dei detriti su una griglia inclinata fissa. Al di sotto della quale		0,0043	cava 70	Mg	55.012	g/h	105,6
"	Vagliatura detriti	300 3-03-020-02, 03	cade il materiale fine e il materiale		0,0043	cava 102	Mg	130.207	g/h	250,0
			grossolano scivola a lato.			cava 102	Mg	36.920	g/h	70,9
						cava 105-106	Mg	83.120	g/h	159,6
						cava 103-100	Mg	23.780	g/h	1,5
			In otizzata aba tutti i datriti ad assa-isra-			cava 67	Mg	63.907	g/h	4,1
		1.3, relazione (3) 13.2.4	Ipotizzato che tutti i detriti, ad eccezione			cava 68	Mg	99.425	g/h	6,4
E	Formazione cumuli	"Aggregate Handling and	dei blocchi, comprensivo il cocciame vengono accumulati temporaneamente in sito		0,00015	cava 70	Mg	55.012	g/h	3,6
		Storage Piles" AP-42				cava 102	Mg	130.207	g/h	8,4
						cava 103	Mg	36.920	g/h	2,4

	Operazione	Riferimento	Descrizione operazione ed eventuali sistemi di mitigazione	им	Fattore di emissione	Cava	UM	Quantità	UM	Emissione media oraria (g/h)
	Posizionamento in ravaneto	SCC 3-05-010-36	Altezza salto del ravaneto: 200m. Umidità del materiale stimata al 30% considerato il sistema di nebulizzazione	Kg/Mg	0,0318	cava 105-106	m³	216.112	g/h	3.065,6
						cava 66	movh x a	569	g/h	4,5
			Sono stati considerati cumuli di equali			cava 67	movh x a	1.530	g/h	12,1
		1.4, relazione (5) 13.2.5	dimensioni pari a circa 256 m ^{3,} diametro			cava 68	movh x a	2.380	g/h	18,8
F	Erosione dal vento dei cumuli		14m altezza 5m. i cumuli sono distribuiti	kg/m² cumuli alti	0,000079	cava 70	movh x a	1.317	g/h	10,4
		AP-42	in tutte le cave proporzionalmente al			cava 102	movh x a	3.117	g/h	24,6
			materiale scavato.			cava 103	movh x a	884	g/h	7,0
				 		cava 105-106	movh x a	1.990	g/h	15,7
			Il carico è effettuato con ribaltamento graduale del materiale			cava 66	Mg	23.780	g/h	0,1
						cava 67	Mg	63.907	g/h	0,3
	Carico materiale detritico su	SCC 3-05-020-31		Kg/Mg	0,000008	cava 68	Mg	99.425	g/h	0,4
G	automezzi					cava 70	Mg	55.012	g/h	0,2
	adiomozzi					cava 102	Mg	130.207	g/h	0,5
						cava 103	Mg	36.920	g/h	0,1
						cava 105-106	Mg	83.120	g/h	0,3
						cava 66	km/h	1,88	g/h	470,7
			Il calcolo tiene conto di sistemi di			cava 67	km/h	2,40	g/h	602,4
	Transita automazzi au niata	1.5 relations (6) 12.2.2	irrigazione che garantiscono la			cava 68	km/h	7,20	g/h	1.807,3
Н	Transito automezzi su piste non asfaltate	1.5, relazione (6) 13.2.2 "Unpaved Road" AP-42	bagnatura per 250 giorni/anno	kg/km	0,251	cava 70	km/h	3,00	g/h	753,0
	non asiailate	Onpaved Road Air 42	comprensivi dei giorni di precipitazione			cava 102	km/h	5,40	g/h	1.355,5
			naturale			cava 103	km/h	0,88	g/h	219,6
						cava 105-106	km/h	3,75	g/h	941,3
		Ra	iteo Emissivo Totale Bacino	Calocara – B	ettogli (g/h)				g/h	12.392,9

Tabella 22 - Riepilogo contributi al rateo emissivo delle singole cave

	cava 66	rateo emissivo	g/h	624,4
	cava 67	rateo emissivo	g/h	1.015,5
	cava 68	rateo emissivo	g/h	2.450,0
Rateo emissivo per singola cava	cava 70	rateo emissivo	g/h	1.108,7
	cava 102	rateo emissivo	g/h	2.197,2
	cava 103	rateo emissivo	g/h	458,3
	cava 105-106	rateo emissivo	g/h	4.538,8

7 RECETTORI

Nella tabella seguente tabella sono riportati i ricettori discreti per i quali sono stati svolti i calcoli.

Tabella 23 - elenco recettori discreti

		Cod	ordinate UTM	Quota
Postazione	Descrizione	X (m)	Y (m)	orografica da CALMET (m)
1	Abitato di Torano	588455	4882686	219
2	Impianto industriale lungo Via Torano Piastra	589570	4883458	344
3	Cimitero Carrara	588242	4882128	143
4	Abitazioni fondovalle tra Via per Colonnata e Torano		4881668	127
5	Ospedale Carrara	588447	4881398	144
6	Abitato di Miseglia	589262	4881770	210
7	Abitato di Codena	589097	4881150	285
8	Abitato di Bedizzano	589998	4881240	295
9	Abitato di Colonnata	592525	4882092	546
10	Via per Colonnata fondovalle	591483	4881472	447
11	Abitato di Miseglia presso gruppo di abitazioni lungo Via Carriona per Ravaccione	589327	4881906	253
12	Gruppo di abitazioni lungo Via Carriona per Ravaccione tra Torano e Miseglia	588588	4881908	220
13	Abitato di Sorgnano	587361	4882314	234
14	Centro abitato di Carrara	588142	4881034	110
15	Carrara presso centro Don Minzoni/ASL		4880752	145
16	Abitato di Bergiola	590049	4879890	496

Nelle figure seguenti è riportata la distribuzione spaziale dei recettori discreti e delle stazioni di rilevamento di qualità dell'aria di ARPAT.

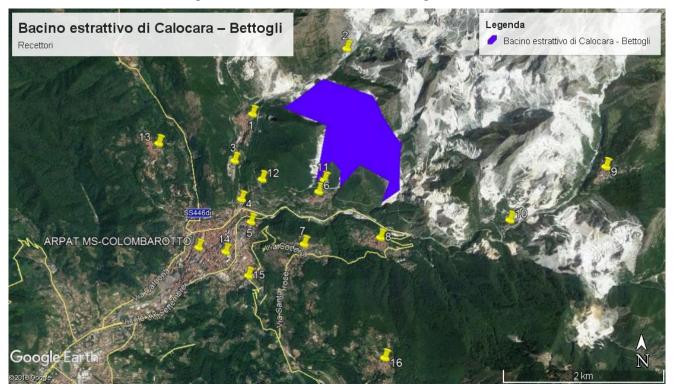


Figura 2 - Ubicazione recettori - vista generale

Figura 3 – Ubicazione centraline di monitoraggio Arpat Colombarotto e Marina Vecchia

8 MODELLO CALPUFF

Per valutare la ricaduta degli inquinanti al suolo è stato utilizzato MMS.Calpuff (vers. 1.9.3.2) programma di gestione del noto modello a puff CALPUFF sviluppato da Earth Tech inc..

Il modello CALPUFF è un modello gaussiano non stazionario che simula la diffusione di inquinanti attraverso il rilascio di una serie continua di puff seguendone la traiettoria in base alle condizioni meteorologiche. Il modello è raccomandato dall'EPA (modelli per la qualità dell'aria.) ed è stato sviluppato dalla Earth Tech Inc. per conto del California Air Resources Board (CARB) e dell'EPA. Il modello contiene formulazioni per la modellistica della dispersione, il trasporto e la rimozione secca e umida di inquinanti in atmosfera al variare delle condizioni meteorologiche considerando l'impatto con il terreno e alcuni semplici schemi di trasformazioni chimiche.

Il sistema CALPUFF è composto da tre componenti principali che costituiscono il pre-processore dei dati meteo (CALMET), il modello di calcolo vero e proprio (CALPUFF) e il post-precessore dei risultati (CALPOST).

Sebbene sia possibile utilizzare CALPUFF anche con dati meteorologici orari relativi ad una singola stazione presente sul territorio il modello è stato progettato per essere utilizzato con campi meteorologici variabili su tutto il dominio di calcolo sia orizzontale che verticale.

Il preprocessore CALMET ricostruisce questi campi meteorologici tridimensionali utilizzando dati al suolo, dati profilometrici e dati orografici e di uso suolo al fine per considerare gli effetti del terreno sulla variazione dei campi meteorologici e di conseguenza sulla diffusione di inquinanti.

8.1 CARATTERISTICHE DI MMS CALPUFF

(MMS Calpuff implementa la versione 6.42 del modello)

Il programma è pensato per facilitare l'utilizzo di questo complesso sistema modellistico, NON è richiesta la gestione del preprocessore meteorologico CALMET.

Se le dimensioni e le caratteristiche dell'area di studio lo richiedono Maind fornisce direttamente il file prodotto da CALMET utilizzato da CALPUFF come input meteorologico. L'utente non ha la necessità di conoscere il significato delle complesse opzioni necessarie per l'utilizzo di CALMET.

Gestione semplificata della configurazione del modello CALPUFF

L'interfaccia utente semplifica la preparazione della configurazione di CALPUFF e nasconde le opzioni più tecniche e complesse consentendo all'utente di concentrarsi sugli aspetti importanti e significativi del calcolo. Molti dati, soprattutto geografici sono importabili direttamente da Google Earth.

Il file di output prodotto da *MMS Calpuff* è perfettamente compatibile con **MMS.RunAnalyzer** (vers 2.6.1.0) il post processore sviluppato da Maind che consente di analizzare e visualizzare

i risultati prodotti da diversi modelli di calcolo consentendone una facile verifica rispetto ai limiti di legge relativamente al D.Lgs n° 155 del 13-08-2010.

Il programma analizza i file di output prodotti dal modello e valuta il superamento di valori di soglia relativamente a:

- · concentrazioni medie orarie;
- concentrazione medie giornaliere sulle otto ore;
- concentrazione medie giornaliere;
- concentrazioni annuali;
- concentrazioni invernali;
- superamenti di valori di soglia per ore consecutive.

Il programma valuta anche il numero di superamenti dal momento che spesso il D.Lgs n° 155 del 13-08-2010 prevede un numero massimo di superamenti ammessi.

Come già accennato il modello permette di considerare l'orografia dell'area.

9 DATI ORARI METEOROLOGICI UTILIZZATI NEL MODELLO

I calcoli sono stati eseguiti assegnando come dato input meteorologico un file meteo 3D in formato CALMET 6.42 relativo al 2016, elaborato dalla MAIND S.r.L.. Il dettaglio del report è riportato in allegato. I dati sono stati ricostruiti su un'area di dimensione 7 Km x 7 Km con risoluzione orizzontale 200 m e risoluzione verticale (quota livelli verticali) 0, 20, 50, 100, 200, 500, 1000, 2000, 4000 m sul livello del suolo.

Sono stati utilizzati in input i dati rilevati nelle stazioni SYNOP ICAO presenti nell'area come indicato nell'immagine seguente ed anche i dati strumentali rilevati da due stazioni meteo del SIR, "Candia Scurtarola" (TOS11000027) e Carrara (TOS11000028) e dalla stazione meteo di Livorno appartenente alla rete Mareografica Nazionale.

Nella ricostruzione del campo meteo non sono stati utilizzati i dati meteo delle stazioni SIR TOS11000028 – Carrara perché di qualità assai dubbia (la stazione é da tempo fuori manutenzione in previsione della dismissione e sostituzione, con la stazione TOS01004007 - Avenza,) ed i dati della stazione TOS11000029 - Campocecina in quanto di scarsa qualità.

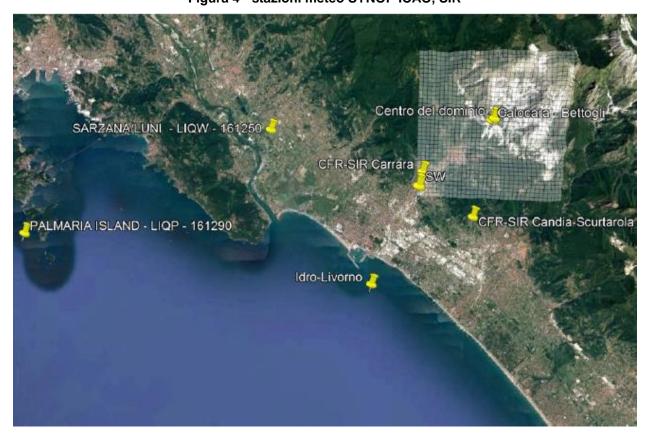


Figura 4 - stazioni meteo SYNOP ICAO, SIR

©FR-SIR Carrara
SW

CFR-SIR Candia-Scurtarola

Figura 5 - reticolo di ricostruzione dati meteo e orografici CALMET

La ricostruzione tridimensionale del campo meteo orario è stata fatta considerando le caratteristiche orografiche e morfologiche dell'area in esame.

I valori di orografia utilizzati sono stati estratti dal DTM NASA SRTM3 mentre i valori di uso del suolo sono stati ottenuti dal Corine Land Cover 2000.

Il reticolo di calcolo utilizzato ha dimensioni 5,6 Km x 5,6 Km con passo 100 m avente origine nel punto di coordinate: 587192 mN, 4879314 mE.

10 VALORI DI QUALITÀ DELL'ARIA

Come valori di qualità dell'aria sono stati presi a riferimento quelli rilevati dalle seguenti centraline:

- MS-MARINA-VECCHIA: stazione urbana di traffico Coordinate (Gauss Boaga Fuso Est): N:4875968 - E:1590801 - Comune: MASSA. In questa stazione sono rilevate le concentrazioni di PM₁₀ e PM_{2.5}. Sono disponibili i valori medi giornalieri rilevati giorno per giorno nel corso del 2016;
- MS-COLOMBAROTTO: stazione urbana di fondo Coordinate (Gauss Boaga Fuso Est): N:4881079 - E:1587811 - Comune: CARRARA. In questa stazione sono rilevate le concentrazioni giornaliere delle PM₁₀

Nella seguente tabella sono riportati i valori di concentrazione rilevati dalle due centraline.

Massima Concentrazione N° concentrazione 90,4 Inquinante Stazione media annua giornaliera percentile superamenti (ug/m³) (ug/m^3) MS-PM₁₀ 21,3 68 33.7 13 COLOMBAROTTO PM_{10} MS-MARINA-21,8 93 33,0 19 **VECCHIA** $PM_{2.5}$ 13,5

Tabella 24 - Dati centraline monitoraggio qualità aria

Le due centraline hanno rilevato livelli di concentrazione medi annuali e del 98° percentile simili.

Cautelativamente come valore di fondo di qualità dell'aria verranno utilizzati i dati rilevati dalla centralina MS-MARINA-VECCHIA che presenta le concentrazioni giornaliere massime ed il numero di superamenti del valore soglia giornaliero di 50 µg/m³ maggiori.

Per il calcolo del contributo dei valori di fondo è stato impiegato per il calcolo dei valori orari, giornalieri e di percentile il metodo B (somma dei quadrati) suggerito dall'UK-EA (*UK-EA*, "The Addition of Background Concentrations to Modelled Contributions from Discharge Stacks", Research and Development, Technical Report P361, 2000:

https://www.gov.uk/government/publications/the-additon-of-backgroundconcentrations-to-modelled-contributions-from-discharge-stacks).

11 VALUTAZIONE EFFETTO BUILDING DOWNWASH

Le sorgenti emissive sono assunte tipo areale e pertanto l'effetto di building downwash non può essere calcolato.

12 DATI DI INPUT

Nelle tabelle seguenti sono riportate per ciascuna cava, l'estensione ed il rateo emissivo espresso in g/s.

Tali valori sono utilizzati come dati di input nel modello MMSCALPUFF.

Tabella 25 - estensione ed il rateo emissivo espresso in g/s

	cava	Estensione (m²)	rateo emissivo (g/s)
	66	69.308	0,17
	67	92.201	0,28
	68	145.525	0,68
Rateo emissivo per singola cava	70	19.286	0,31
	102	156.056	0,61
	103	22.031	0,13
	105-106	191.398	1,26

13 Risultati simulazioni short term con sequenze di dati orari

Nei paragrafi seguenti sono riportati i risultati delle simulazioni.

13.1 PM₁₀

Nelle seguenti tabelle sono illustrati i risultati delle simulazioni condotte per determinare le concentrazioni di PM_{10} .

Sono riportati i valori di picco su 24h, il 90.4° percentile annuo delle concentrazioni giornaliere ed il valore medio annuo.

Viene valutato il contributo del livello di fondo con i dati rilevati dalla stazione urbana di traffico di MS-MARINA-VECCHIA.

Tabella 26 - valori di concentrazione delle PM₁₀

	so	LO IMPIANT	0	IMPI	ANTO + FON	DO		
Post.	PM₁₀ Valori di picco 24 h (µg/m³)	PM ₁₀ 90,4° percentile (µg/m³)	PM ₁₀ Valori medi annuali (µg/m³)	PM₁₀ Valori di picco 24 h (µg/m³)	PM ₁₀ 90,4° percentile (µg/m³)	PM ₁₀ Valori medi annuali (µg/m³)	PM ₁₀ Limite giornaliero per la protezione della popolazione (da non superare più di 35 volte in un anno) (µg/m³)	PM ₁₀ Valore limite anno civile per la protezione della popolazione (μg/m³)
1	3,3	1,41	0,56	93,6	34	22,4	50	40
2	17,9	8,12	4,86	99,0	38	26,7	50	40
3	3,6	0,87	0,32	93,4	33	22,1	50	40
4	4,5	0,70	0,26	93,4	33	22,1	50	40
5	4,4	0,62	0,24	93,4	33	22,0	50	40
6	2,4	0,93	0,36	93,4	33	22,2	50	40
7	2,2	0,85	0,29	93,3	33	22,1	50	40
8	1,5	0,52	0,18	93,2	33	22,0	50	40
9	1,1	0,17	0,07	93,1	33	21,9	50	40
10	5,1	0,30	0,12	93,3	33	21,9	50	40
11	2,8	1,33	0,51	93,5	34	22,3	50	40
12	5,0	1,03	0,40	93,6	33	22,2	50	40
13	1,5	0,52	0,19	93,2	33	22,0	50	40
14	2,9	0,42	0,17	93,2	33	22,0	50	40
15	2,6	0,40	0,15	93,2	33	21,9	50	40
16	1,2	0,31	0,10	93,1	33	21,9	50	40

Nelle seguenti figure sono riportate le curve di concentrazione delle PM₁₀ (medie annuali, picchi giornalieri e numero di superamenti del valore soglia di 50 μg/m³).

Figura 6 - PM₁₀ concentrazioni medie annuali contributo solo bacino estrattivo

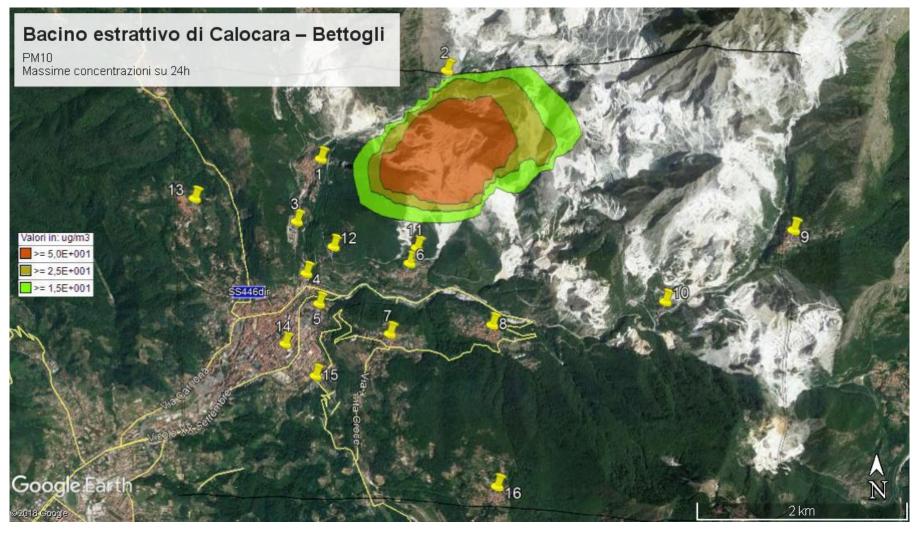


Figura 7 - PM₁₀ concentrazioni di picco giornaliere contributo solo bacino estrattivo

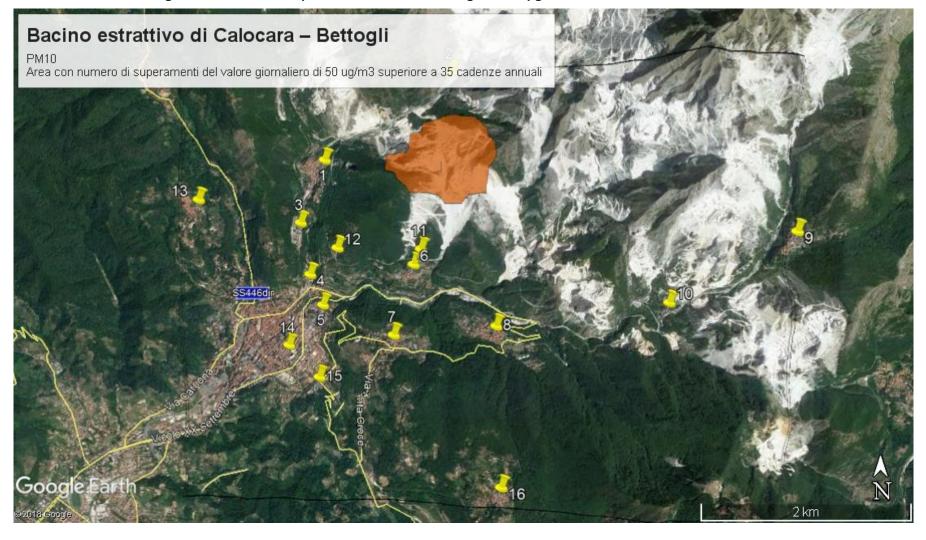


Figura 8 - Numero di superamenti del valore di soglia di 50 µg/m³ contributo solo bacino estrattivo

Le concentrazioni di picco giornaliere ed il 90,4° percentile prodotti dal solo bacino estrattivo sono su tutti i punti recettori inferiori al **valore limite giornaliero.**

Sommando al contributo del bacino estrattivo i valori di qualità dell'aria rilevati dalla centralina, è verificato il rispetto dei valori limite giornalieri.

I valori di picco di fondo risultano già di per sé assai significativi, circa 93 μ g/m³, per cui l'ulteriore contributo delle attività svolte all'interno del bacino estrattivo risulta poco significativo. Si osservano difatti incrementi di pochi μ g/m³.

Anche per il 90,4° percentile gli incrementi prodotti dall'impianto risultano poco significativi.

I valori medi annuali del solo impianto risultano più bassi di circa 1 ordine di grandezza rispetto al valore limite annuale, e se a questi sommiamo il valore medio rilevato dalla centralina di qualità dell'aria, si osserva sempre il rispetto dei valori medi annuali con ampio margine di sicurezza.

Per tutti i parametri (concentrazioni medie annuali, valori di picco sulle 24h, e 90,4° percentile delle concentrazioni medie giornaliere) gli incrementi prodotti dalle attività svolte all'interno del bacino estrattivo risultano poco significative e tali da non alterare la qualità dell'aria dell'ambiente circostante.

Osservando i grafici precedenti appare risulta che l'impatto delle attività sia circoscritto solo al bacino marmifero.

In particolare, dalla figura 5, risulta palese che il superamento dei valori di soglia di $50 \,\mu\text{g/m}^3$ e l'area in cui tali superamenti sono maggiori di $35 \,\text{cadenze}$ annue è limitato al solo bacino estrattivo non venendo in alcun modo ad interessare le aree circostanti.

13.2 PM_{2.5}

Nella seguente tabella sono riportati i risultati delle simulazioni delle PM_{2.5}.

Viene valutato il contributo del livello di fondo con i dati rilevati dalla stazione urbana di traffico di MS-MARINA-VECCHIA.

Tabella 27 - Valori di concentrazione medie annuali calcolati di PM_{2.5}

	SOLO IMPIANTO	IMPIANTO + FONDO	
Post.	PM₁₀ Valore medio annuale (μg/m³)	PM₁₀ Valore medio annuale (μg/m³)	PM ₁₀ Valore limite anno civile per la protezione della popolazione (μg/m³)
1	0,3	13,8	25
2	2,9	16,4	25
3	0,2	13,7	25
4	0,2	13,7	25
5	0,1	13,6	25
6	0,2	13,7	25
7	0,2	13,7	25
8	0,1	13,6	25
9	0,0	13,5	25
10	0,1	13,6	25
11	0,3	13,8	25
12	0,2	13,7	25
13	0,1	13,6	25
14	0,1	13,6	25
15	0,1	13,6	25
16	0,1	13,6	25

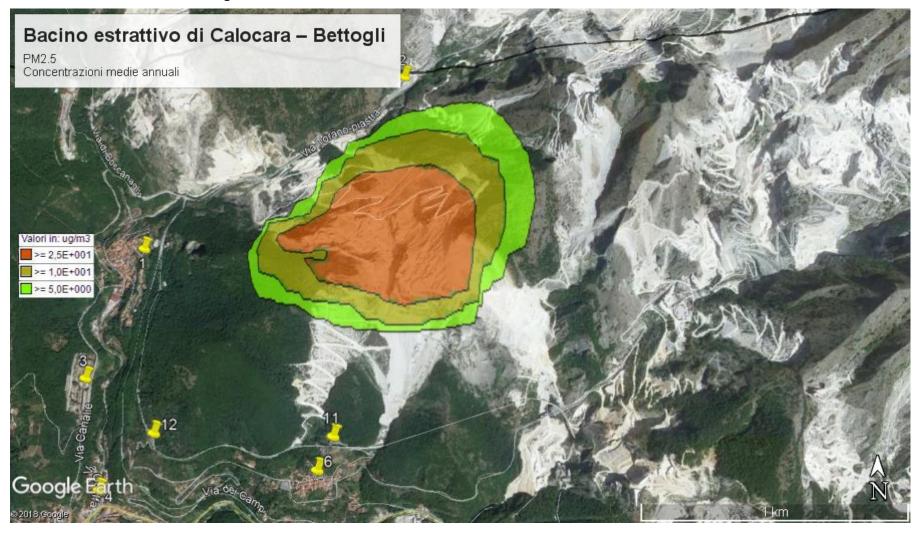


Figura 9 - PM_{2.5} concentrazioni medie annuali contributo solo bacino estrattivo

Per le PM_{2.5}, il contributo del solo impianto è inferiore ai valori limite di circa 1/2 ordini di grandezza. Includendo il contributo dei valori di fondo delle PM_{2.5}, risulta un ampio rispetto dei valori limite.

Osservando che la differenza che intercorre tra le concentrazioni rilevate e quelle calcolate, e le ipotesi ampiamente cautelative utilizzate per determinare i ratei emissivi delle PM_{2.5} (pari al 60% delle PM₁₀) è possibile affermare, che per questa tipologia di inquinante l'impatto del bacino estrattivo risulta ampiamente trascurabile.

Il grafico precedente indica che i valori più elevati delle concentrazioni medie annuali sono circoscritte solo al bacino marmifero.

In particolare, dalla figura 6, risulta evidente che il superamento dei valori di soglia di 25 µg/m³ è ristretto solo al bacino estrattivo e che al di fuori di esso si ha un ampio rispetto del valore medio annuale considerando anche il contributo del livello di fondo.

14 PROPOSTA PUNTI DI MONITORAGGIO DELLE EMISSIONI PRODOTTE DAL BACINO ESTRATTIVO

I risultati delle simulazioni indicano un ampio rispetto dei valori limite su tutti i recettori individuati per entrambi gli inquinanti analizzati.

Dai grafici ricavati risulta evidente che l'area di maggior contributo rimanga compresa entro i limiti del bacino estrattivo.

L'individuazione di una o più postazioni di monitoraggio delle polveri prodotte, può essere condotta sulla base dele seguenti osservazioni:

• i punti con maggiore impatto sono la postazione 1, 2 e 11.

La postazione 2 (Impianto industriale lungo Via Torano Piastra) non si ritiene del tutto idonea a valutare strumentalmente l'impatto delle attività svolte dal bacino estrattivo in quanto, pur presentando valori di concentrazioni non trascurabili, é posta lungo la strada di Torano-Piastra che durante tutto il periodo di riferimento diurno, e quindi durante lo svolgimento delle attività lavorative nel bacino estrattivo, risulta interessata da un intenso traffico di mezzi pesanti che potrebbero pregiudicare la rilevabilità del contributo del bacino. Inoltre si rileva che presso tale postazione non sono presenti recettori sensibili ma solo un'attività lavorativa legata alla lavorazione dei detriti di marmo.

Di maggiore interesse sono le **postazioni 1 (Abitato di Torano) e 11 (Abitato di Miseglia presso gruppo di abitazioni lungo Via Carriona per Ravaccione)**, per le quali i valori di concentrazioni del 90,4° percentile sono tra le più significative, ovvero superiori ad 1 µg/m3 e quindi con almeno 35 giorni l'anno con concentrazioni medie giornaliere superiori ad 1 µg/m3.

Tali postazioni sono **rappresentative di recettori sensibili** in quanto la 1 è posta presso l'abitato di Torano e la 11 presso un gruppo di abitazioni di Miseglia poste lungo Via Carriona per Ravaccione, entrambe sono tra le **più vicine al bacino estrattivo**.

15 CONCLUSIONI E PROPOSTA DI INTERVENTI DI MIGLIORAMENTO E MITIGAZIONE E MIGLIORAMENTO

Lo studio condotto, svolto su ipotesi ampiamente cautelative, si rammenta infatti che non è stato considerata la deposizione secca ed umida, indica un pieno ed ampio rispetto dei valori limite di qualità dell'aria per le PM_{10} e $PM_{2.5}$.

L'impatto maggiore risulta limitato al solo bacino estrattivo, in quanto la quota più elevata rispetto ai recettori individuati e a tutte le aree abitate e sensibili presenti, permette un'importante e rapida diluizione delle concentrazioni.

Per tutti i parametri gli incrementi prodotti dalle attività svolte all'interno del bacino estrattivo risultano poco significative e tali da non alterare la qualità dell'aria dell'ambiente circostante.

Si ritiene pertanto che l'attività di estrazione condotta all'interno del bacino Calocara-Bettogli venga svolta nel rispetto dei limiti previsti dall'attuale normativa di qualità dell'aria.

I risultati ottenuti dal calcolo del rateo emissivo generato dall'attività estrattiva hanno dimostrato che le cave che operano all'interno del bacino di Calocara – Bettogli generano un emissioni polverulente in concentrazioni significative che hanno previsto un approfondimento con la presentazione dello studio meteo diffusionale imposto su modello CALPUFF.

Come indicato nei capitoli precedenti, i risultati ottenuti dal modello rilevano che le ricadute delle emissioni diffuse generate dal bacino estrattivo Calocara – Bettogli consentono un pieno ed ampio rispetto dei valori limite di qualità dell'aria per le PM₁₀ e PM_{2.5}.

Premesso che il calcolo del rateo emissivo sono stati basati su ipotesi cautelative che hanno fornito un rateo emissivo sovrastimato, escludendo in alcuni casi sistemi di mitigazione che le ditte già adottano.

In linea con le indicazioni progettuali già presentate dai progettisti, si ritiene di suggerire l'adozione dei seguenti accorgimenti operativi:

- Umidificazione costante delle piste e dei piazzali con sistemi fissi e mobili di irrigazione e nebulizzazione;
- 2. Realizzazione interventi di progetto di pavimentazione delle strade;
- 3. Bagnatura del ravaneto della cava 105-106 durante le operazioni di posizionamento;
- 4. Velocità ridotte di transito di mezzi sulle aree non asfaltate;
- 5. Ribaltamenti graduali dei materiali detritici con le pale ed escavatori;
- 6. Esecuzione di tagli a secco previo utilizzo di aspiratori localizzati;
- 7. Pulizia delle piste e dei piazzali;
- 8. Manutenzione periodica dei sistemi di nebulizzazione e irrigazione;

REGIONE TOSCANA Comune di Carrara

BACINO ESTRATTIVO MARMIFERO DI CALOCARA – BETTOGLI

VALUTAZIONE DELLE EMISSIONI DI POLVERE PROVENIENTI DA ATTIVITÀ DI PRODUZIONE, MANIPOLAZIONE, TRASPORTO, CARICO O ACCUMULO DI MATERIALI POLVERULENTI

STUDIO METEO DIFFUSIONALE

Riferimento Normativo:

D.Lgs. n.152/06 Parte V Emissioni in atmosfera

ARPA Toscana - Linee guida per la valutazione delle emissioni di polveri provenienti da attività di produzione, manipolazione, trasporto, carico o stoccaggio di materiali polverulenti

OTTOBRE 2018

Rif. File RT-AD0609.AC.AL.AMB.docx

ALLEGATO REPORT FORNITURA DATI METEOROLOGICI IN FORMATO MMS CALPUFF - MAIND SRL - MILANO

Ecol Studio S.p.A. Sede Legale: Via San Michele del Carso 4 20144 - Milano Sede Operativa: 55100 - Lucca

Maind S.r.l Milano

P.za L. Da Vinci, 7 20133 Milano C.F. e P.IVA 09596850157 tel. +39 (0)2 2367490 fax. +39 (0)2 45409619

Informazioni: info@maindsupport.it Website: www.maind.it

Località Bettogli - Calocara (MC) Coordinate (44.089881°N, 10.118532E)

Anno 2016 Periodo

Caratteristiche del dominio richiesto:

x = 58614200 m E - y = 4879064.00 m N UTM fuso 32 - WGS84Origine SW

Dimensioni orizzontali totali 7 km x 7 km

Risoluzione orizzontale (dimensioni griglia) dx = dy = 200 m

Report fornitura dati meteorologici in formato MMS CALPUFF

Risoluzione verticale (quota livelli verticali) 0.,20.,50.,100.,200.,500.,1000.,2000.,4000. m sul livello del suolo

I dati forniti sono stati ricostruiti per l'area descritta attraverso un'elaborazione "mass consistent" effettuata con il modello meteorologico CALMET con la risoluzione indicata nella pagina precedente, dei dati rilevati nelle stazioni SYNOP ICAO di superficie e profilometriche presenti sul territorio nazionale (vedere i file "elenco stazione superficie ICAO.pdf" e "elenco stazione radiosondaggi ICAO.pdf" allegati alla fornitura).

Maind S.r.l Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157

tel. +39 (0)2 2367490 fax. +39 (0)2 45409619 Informazioni: <u>info@maindsupport.it</u> Website: <u>www.maind.it</u>

Il modello CALMET ricostruisce per interpolazione 3D "mass consistent", pesata sull'inverso del quadrato della distanza, un campo iniziale tridimensionale (FIRST GUESS) che viene modificato per incorporare gli effetti geomorfologici ed orografici del sito in esame alla risoluzione spaziale richiesta; su questo campo meteo (STEP 1) vengono infine reinserite le osservabili misurate per ottenere il campo finale (STEP 2) all'interno del quale vengono recuperate le informazioni sito-specifiche delle misure meteorologiche rilevate nelle stazioni di Candia Scurtarola e Carrara della rete regionale CFR-SIR della Toscana e della stazione mareografica di Livorno utilizzata per descrivere le caratteristiche del regime di brezza locale.

La stazione di Livorno, considerata attendibile anche per la costa di Carrara,è stata inserita all'interno del dominio di calcolo in una posizione "virtuale<2 adatta alla caratterizzazione delle temperature aria-acqua e dell'anemologia costiera.

Per informazioni più dettagliate sul funzionamento del preprocessore CALMET si deve fare riferimento alla documentazione originale del modello al seguente link

(http://www.src.com/calpuff/download/MMS_Files/MMS2006_Volume2_CALMET_Preprocessors.pdf)

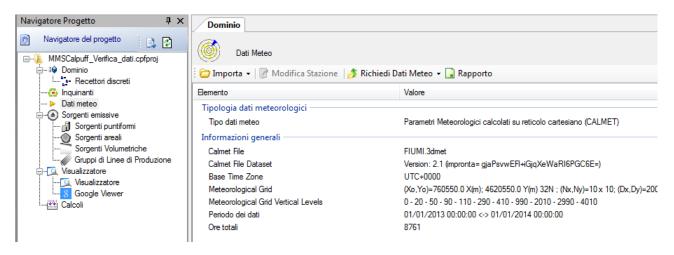
Poiché il peso di ognuna di queste stazioni meteo usate nella ricostruzione del campo meteo è inversamente proporzionale alla distanza quadratica delle stazioni nell'immagine seguente vengono riportate le stazioni SYNOP-ICAO più vicine/significativa al sito richiesto.

Maind S.r.I Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157

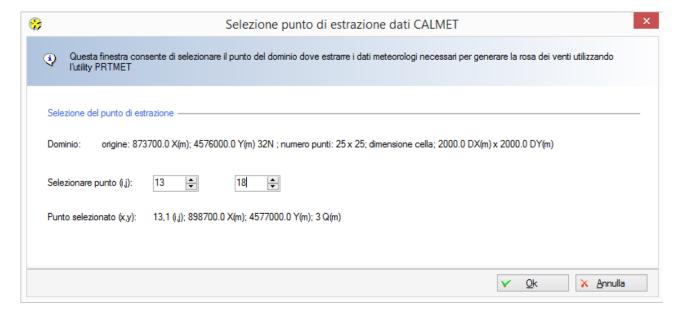
tel. +39 (0)2 2367490 fax. +39 (0)2 45409619 Informazioni: info@maindsupport.it
Website: www.maind.it

Uso dei dati 3D in MMSCalpuff

Importazione dati: dal navigatore di progetto selezionare


```
"Dominio → Importa → Dati CALMET" oppure "Dati meteo → Importa → Dati CALMET"
```

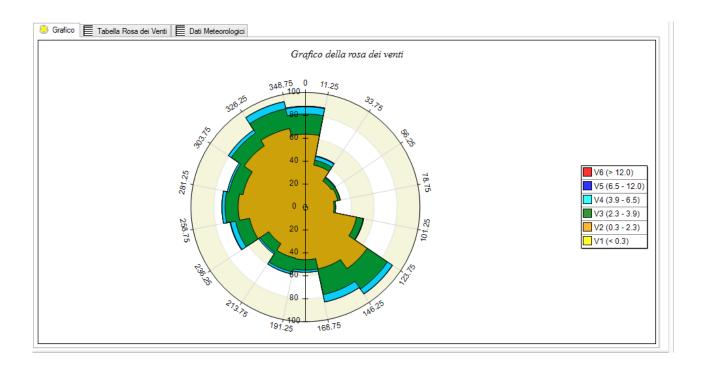
L'importazione dei dati CALMET 3D permette di importare nel progetto le caratteristiche geomorfologiche del dominio meteorologico


NOTA: i dati 3D forniti da MAIND sono georeferenziati in coordinate UTM Fuso 32; è possibile in fase di importazione riportare i dati mete al fuso geografico del progetto se differente da quello dei dati

Analisi dei dati meteo 3D

Per visualizzare/analizzare il contenuto del file 3D fornito utilizzare l'utility "Rapporto" accessibile attraverso la voce "Dati meteo" del navigatore di progetto.

Specificando gli indici (i,j) della cella richiesta



Maind S.r.l Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157 tel. +39 (0)2 2367490 fax. +39 (0)2 45409619

Informazioni: info@maindsupport.it Website: www.maind.it

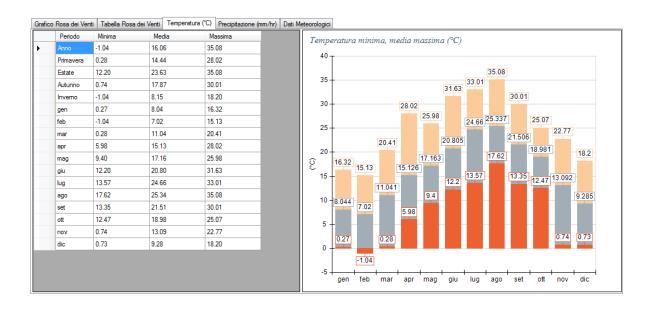
è possibile estrarre il grafico della rosa dei venti per la cella richiesta

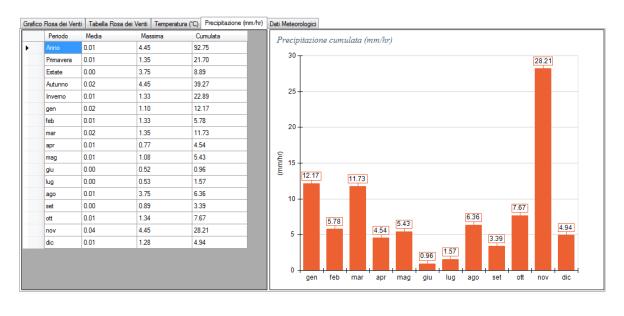
la tabella dei valori orari delle principali variabili meteorologiche riferite sempre alla cella richiesta

🦲 Grafico	Tabella Rosa dei	Venti Dati N	Meteorologici			
	Data	Vel. vento (m/s)	Dir. vento (deg)	Temp. aria (K)	Stabilità	Rate Prec. (mm/hr)
•	01/01/2014 00.00	2.4	346.13	281.15	E	0
	01/01/2014 01.00	2.16	342.96	279.15	E	0
	01/01/2014 02.00	1.98	336.35	279.15	FG	0
	01/01/2014 03.00	1.94	335.93	278.15	E	0
	01/01/2014 04.00	1.71	343.85	274.31	FG	0
	01/01/2014 05.00	1.51	334.69	273.94	FG	0
	01/01/2014 06.00	1.39	340.23	274.35	FG	0
	01/01/2014 07.00	0.96	347.03	274.64	С	0
	01/01/2014 08.00	0.82	6.06	277.93	В	0
	01/01/2014 09.00	0.38	19.56	279.97	В	0
	01/01/2014 10.00	0.54	41.58	282.84	В	0
	01/01/2014 11.00	0.64	20.11	283.49	В	0
	01/01/2014 12.00	0.32	28.17	284.76	В	0
	01/01/2014 13.00	0.41	293.97	286.37	С	0
	01/01/2014 14.00	0.33	283.45	286.36	С	0
	01/01/2014 15.00	1.43	281.18	284.27	С	0
	01/01/2014 16.00	1.08	301.93	281.46	FG	0
	01/01/2014 17.00	0.93	349.43	280.34	FG	0
	01/01/2014 18.00	0.84	310.68	282.15	FG	0
	01/01/2014 19.00	1.09	323.87	281.15	FG	0

La tabella della rosa dei venti con le frequenze di accadimento velocità-direzione

I grafici mensili di temperatura e precipitazione

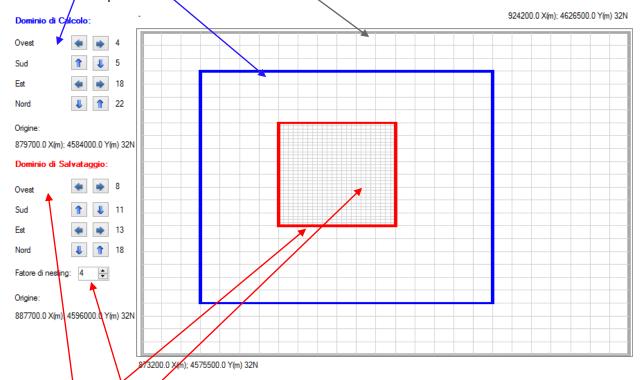



Maind S.r.l Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157

tel. +39 (0)2 2367490 fax. +39 (0)2 45409619 Informazioni: info@maindsupport.it

Website: www.maind.it

SECTORS	V1 (< 0.3)	V2 (0.3 - 0.5)	V3 (0.5 - 2.3)	V4 (2.3 - 3.9)	V5 (3.9 - 6.5)	V6 (6.5 - 12.0)	V7 (> 12.0)	Totale	Vmed
348.8 - 11.3	1.26	0.91	33.56	17.01	9.47	6.74	0.11	69.06	2.95
11.3 - 33.8	1.48	1.14	40.98	19.06	10.73	5.82	0.23	79.45	2.81
33.8 - 56.3	0.23	1.71	46.35	35.39	9.59	0.57	0.11	93.95	2.44
56.3 - 78.8	0.68	0.46	61.53	39.61	6.51	0.68	0.00	109.47	2.28
78.8 - 101.3	0.00	0.80	32.31	49.89	7.88	0.57	0.00	91.44	2.65
101.3 - 123	8 0.23	0.46	13.70	15.64	11.19	3.20	0.00	44.41	3.31
123.8 - 146	3 0.11	0.46	9.02	17.24	17.24	16.32	0.57	60.96	4.88
146.3 - 168	8 0.11	0.11	9.93	10.27	20.21	10.96	0.46	52.05	4.67
168.8 - 191	3 0.11	0.34	6.05	12.56	18.72	4.57	0.00	42.35	4.11
191.3 - 213	8 0.00	0.68	4.45	9.70	11.42	3.20	0.11	29.57	3.97
213.8 - 236	3 0.57	0.00	4.45	9.59	19.63	7.31	0.23	41.78	4.71
236.3 - 258	8 0.00	0.11	8.79	16.21	33.79	21.69	1.14	81.74	5.21
258.8 - 281	3 0.80	0.57	13.70	23.40	48.63	10.27	0.23	97.60	4.29
281.3 - 303	8 0.11	0.11	13.47	10.96	17.24	6.96	0.00	48.86	3.97
303.8 - 326	3 0.23	0.91	11.87	7.65	3.65	1.83	0.00	26.14	2.82
326.3 - 348	8 0.80	0.57	17.12	7.99	2.85	1.71	0.00	31.05	2.36
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.00
Totale	6.85	9.36	327.28	302.17	248.74	102.40	3.20	1000.00	0.00


Maind S.r.l Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157

tel. +39 (0)2 2367490 fax. +39 (0)2 45409619 Informazioni: info@maindsupport.it
Website: www.maind.it

Impostazione dei domini di calcolo

Dominio meteo: dominio letto dal file 3D - Non modificabile

Dominio di calcolo diffusivo: sottoinsieme del dominio meteo, permette di circoscrivere la zona di calcolo delle concentrazione riducendo il dominio alla sola area interessata al fenomeno diffusivo. La scelta del dominio di calcolo può essere fatta utilizzando le frecce relative all'area "Dominio di Calcolo o alternativamente specificando l'estensione in termini di numero di celle dalla scheda "Modifica → Dominio"

Dominio di salvataggio: sottoinsieme del dominio di calcolo diffusivo permette, attraverso l'impostazione di un opportuno fattore di "nesting" l'infittimento della griglia di recettori nei quali verranno salvati i valori di concentrazione calcolati dal modello. La scelta del dominio di calcolo può essere fatta utilizzando le frecce relative all'area "Dominio di Calcolo o alternativamente specificando l'estensione in termini di numero di celle dalla scheda "Modifica → Dominio"

Impostazioni del dominio meteorologico					
Origine (angolo Sud Ovest)	X (m):	873700	Y (m):	4576000	
Numero di punti	Nx:	25 📥	Ny:	25	
Dimensione della cella	DGRID (m):	2000 🛓		0	
Impostazioni del dominio di calcolo e di salvata	aggio dati ——			Imposta graficamente ->	
Indici lungo X del reticolo di calcolo	Start index:	4	End index:	18	
Indici lungo Y del reticolo di calcolo	Start index:	5	End index:	22 🛓	
Indici lungo X del reticolo di campionamento	indice iniziale	8	indice finale	13	
Indici lungo Y del reticolo di campionamento	indice iniziale	11 📥	indice finale	18	
Fattore di annidamento:	4				

Elenco stazioni SYNOP – ICAO di radiosondaggio sul territorio italiano

USAF	STATION NAME	ICAO	LAT	LON	ELEV(M)
16080	Linate		45.43	9.28	
16113	LEVALDIGI		44.533	7.62	
16044	Udine Campoformido (fino giugno 2016)		46.03	13.18	
16045	Udine Rivolto		45.97	13.05	
16144	San Pietro Capofiume		44.65	11.62	
16245	Pratica di Mare		41.65	12.43	
16320	Brindisi-Casale		40.65	17.95	
16429	Trapani-Birgi		37.92	12.50	
77610	Ajaccio		41.92	8.80	

Elenco generale stazioni SYNOP – ICAO sul territorio italiano

USAF	STATION NAME	ICAO	LAT	LON	ELEV(M)	BEGIN	END
160010	BASSANO DEL GRAPPA	LIPJ	45.767	11.733		19770513	19790830
160016	ANCONA		43.617	13.517	103	19730101	19751109
160060	BOGUS ITALIAN					19860721	20020121
160080	S. VALENTINO ALLA MUTA		46.75	10.533	1461	19670102	20160109
160083	RESIA PASS	LIVE	46.833	10.5	1800	19870326	20160109
160140	VIPITENO		46.883	11.433	921	20050727	20160109
160150	BRENNERO PASS		46.983	11.5	1362	19730101	19840514
160180	SOPRABOLZANO		46.533	11.417	1298	19730226	19760101
160200	BOLZANO	LIPB	46.46	11.326	240.5	19650129	20160109
160210	ROLLE PASS	LIVR	46.3	11.783	2006	19730101	20160109
160220	PAGANELLA MOUNTAIN	LIVP	46.15	11.033	2129	19730101	20160109
160230	TRENTO		46.017	11.117	190	20070605	20120531
160330	DOBBIACO	LIVD	46.733	12.217	1226	19730101	20160109
160360	AVIANO AB	LIPA	46.032	12.596	117	19660701	20160109
160370	AVIANO (USAF)	LIYW	46.033	12.617	125	19930701	20151020
160400	TARVISIO	LIVO	46.5	13.583	778	19650129	20160109
160440	UDINE/CAMPOFORMIDO	LIPD	46.033	13.183	94	19660104	19990330
160450	RIVOLTO	LIPI	45.979	13.049	54.6	19580414	20151222
160455	GORIZIA	LIPG	45.95	13.633	63	19731122	19840512
160460	UDINE/RIVOLTO		45.967	13.033	53	20061024	20120531
160520	PIAN ROSA (MTN TOP)	LIMH	45.933	7.7	3488	19650129	20160109
160530	COLLE DEL GIGANTE	LIMI	46.917	12.1	-999.9	19730101	20050505
160540	AOSTA POLLEIN	LIMW	45.733	7.35	551	19840701	20160109
160580	BOUSSON		44.933	6.817	1400	20050727	20160109
160590	TORINO CASELLE	LIMF	45.201	7.65	301.4	19640811	20160109
160595	AERITALIA-TORINO	LIMA	45.086	7.603	288.3	20080425	20160109
160600	TORINO VENARIA		45.117	7.617	277	20050727	20160109
160610	TORINO/BRIC CROCE	LIMK	45.033	7.733	710	19730101	20160109
160640	CAMERI	LIMN	45.53	8.669	178.6	19660923	20160108
160660	MALPENSA	LIMC	45.631	8.728	233.8	19650204	20160109
160670	GALLARATE		45.65	8.817	238	20061024	20120531
160680	CASALE MONFERRATO		45.1	8.45	120	20050727	20120531
160700	GRIGNA SETTENTRION		45.95	9.383	2403	19730301	20050902
160720	BISBINO MOUNTAIN	LIMO	45.867	9.067	1322	19730101	20070227
160730	MONTE BISBINO		45.867	9.067	1323	20060201	20080801
160740	VALCAVA		45.783	9.517	1262	19770309	19790828
160760	BERGAMO ORIO AL SERIO	LIME	45.674	9.704	238.4	19660908	20160109
160800	LINATE	LIML	45.445	9.277	107.6	19310104	20160109
160810	MILANO/LINATE		45.467	9.267	108	20050727	20160109
160840	PIACENZA	LIMS	44.913	9.723	139	19660914	20160109
160880	GHEDI	LIPL	45.432	10.268	101.5	19660904	20160108

				1		1	
160890	DESENZANO		45.467	10.55	65	20050727	20160109
160900	VILLAFRANCA	LIPX	45.396	10.889	72.8	19450518	20160109
160903	PADOVA (CIV/IT-AFB)		45.4	11.85	13	19820625	19901115
160920	GRAPPA MOUNTAIN		45.867	11.8	1775	19730101	19840910
160940	VICENZA	LIPT	45.573	11.53	39	19660904	20150116
160950	PADOVA	LIPU	45.4	11.85	14	19730101	20160109
160960	MOUNT VENDA	LIVV	45.317	11.683	575	19730101	19790315
160980	ISTRANA	LIPS	45.685	12.083	41.8	19660904	20160109
160990	TREVISO	LIPH	45.648	12.194	18	19660901	20160109
161000	VENEZIA/SAN NICOLO	LIPV	45.433	12.383	4	19511001	19790830
161010	VENEZIA LIDO		45.433	12.383	5	19961205	20120531
161050	VENEZIA TESSERA	LIPZ	45.505	12.352	2.1	19610301	20160109
161070	CONCORDIA SAGITTARIA		45.75	12.85	2	20051013	20160109
161080	RONCHI DEI LEGIONARI	LIPQ	45.828	13.472	11.3	19730101	20160109
161100	TRIESTE	LIVT	45.65	13.75	20	19321020	20160109
161110	MONTE SETTEPANI		44.233	8.2	1382	20050727	20160109
161120	FRAITEVE MOUNTAIN	LIMX	44.983	6.85	2680	19730101	19840525
161140	MONDOVI		44.383	7.817	560	19841101	20160109
161150	MALANOTTE MOUNTAIN	LIMY	44.25	7.8	1742	19730608	20160109
161160	GOVONE		44.8	8.1	315	19730101	20010713
161170	CUNEO LEVALDIGI		44.533	7.617	386	19730620	20120531
161180	NOVI LIGURE		44.767	8.783	187	19750401	20050506
161190	GIOVI PASS	LIMV	44.633	8.933	475	19730101	20160108
161200	GENOVA SESTRI	LIMJ	44.412	8.842	4	19280101	20160109
161210	GENOVA		44.4	8.9	45	19511001	20160109
161220	ALBENGA	LIMG	44.051	8.127	45.1	19730101	20160109
161230	CHIAVARI		44.317	9.333	30	20050727	20160109
161240	CISA PASS	LIMT	44.433	9.933	1040	19730101	20160108
161250	SARZANA/LUNI	LIQW	44.083	9.983	10	19731109	20160108
161260	PASSO DEI GIOVI		44.55	8.933	488	20050727	20120531
161280	MODENA		44.65	10.95	33	20050727	20120531
161290	PALMARIA ISLAND	LIQP	44.033	9.833	192	19730101	20160109
161300	PARMA		44.817	10.283	51	19660101	20120531
161320	BOLOGNA		44.533	11.283	52	20050727	20160109
161330	FERRARA		44.8	11.6	10	20050727	20160109
161340	CIMONE MOUNTAIN	LIVC	44.2	10.7	2173	19650201	20160109
161380	FERRARA (AUT)	LIPF	44.833	11.617	10	19730101	20160109
161400	BOLOGNA	LIPE	44.535	11.289	37.5	19640811	20160109
161420	RIFREDO MUGELLO		44.05	11.383	887	19441202	20050124
161440	S. PIETRO CAPOFIUME		11.5	11 (17	10	20001010	20010202
161440	MOLINELLA (BOLOGNA)	11324	44.65	11.617	12	20001019	20010202
161460	POINT MARINA/RAVENN	LIVM	44.45	12.3	6	19660104	20160108
161470	FORLI	LIPK	44.195	12.07	29.6	19730101	20160108
161480	CERVIA	LIPC	44.224	12.307	5.5	19730101	20160109

				•			
161490	RIMINI	LIPR	44.02	12.612	12.5	19450408	20160109
161500	IMPERIA		43.867	8.033	60	19851201	20120531
161530	CAPE MELE	LIMU	43.95	8.167	221	19650501	20160109
161540	ISOLA GORGONA		43.433	9.9	260	19730101	20090206
161550	ISOLA CAPRAIA		43.033	9.817	27	20070717	20081113
161580	PISA	LIRP	43.684	10.393	1.8	19441124	20160109
161650	VOLTERRA		43.4	10.883	575	20050727	20060927
161680	MOUNT ARGENTARIO	LIQO	42.383	11.167	632	19730101	20160109
161700	FIRENZE	LIRQ	43.81	11.205	43.9	19310102	20160109
161710	FIRENZE		43.783	11.217	18	20050727	20160109
161720	AREZZO	LIQB	43.467	11.85	249	19780914	20160109
161743	SIENA	LIQS	43.317	11.35	322	19441004	19450116
161760	SASSOFELTRIO		43.883	12.517	461	19730101	19751224
161790	FRONTONE	LIVF	43.517	12.733	574	19730101	20160109
161810	PERUGIA	LIRZ	43.096	12.513	211.2	19671106	20160109
161820	PERUGIA S. EGIDIO		43.1	12.5	205	20050727	20120531
161900	ANCONA		43.617	13.533	142	19490403	20160109
161910	FALCONARA	LIPY	43.616	13.362	14.9	19450414	20160109
161915	JESI		43.517	13.233	-999	19730719	19740814
161920	LORETO		43.433	13.583	197	20050727	20160109
161970	MONTE CALAMITA	LIRX	42.733	10.4	397	19730101	20160109
161980	ISOLA D'ELBA		42.733	10.4	397	20050727	20090206
162000	PIANOSA ISLAND		42.583	10.1	15	19650201	19791220
162040	RADICOFANI	LIQR	42.9	11.767	918	19730101	20160108
162060	GROSSETO	LIRS	42.76	11.072	4.6	19441211	20160109
162100	FURBARA		42	12.017	11	20151209	20160106
162120	S. TERESA		44.417	14.167	5	20070809	20070809
162140	CIVITAVECCHIA		42.017	11.817	4	19450305	20160109
162150	CIVITAVECCHIA	LIQJ	42.02	11.82	4	20050727	20160109
162160	VITERBO	LIRV	42.43	12.064	301.8	19440701	20160109
162170	ORTE		42.483	12.333	75	20050727	20120531
162180	VITERBO		42.433	12.05	310	20050727	20160109
162190	TERMINILLO MOUNTAIN	LIRK	42.467	12.983	1875	19650201	20160108
162210	RIETI	LIQN	42.417	12.85	389	19731213	20160109
162230	VIGNA DI VALLE		42.083	12.217	266	20050727	20080523
162240	VIGNA DI VALLE(MIL)	LIRB	42.083	12.217	270	19730101	20160109
162250	GROTTAMMARE		42.983	13.867	1	19730101	19840916
162260	L'AQUILA		42.367	13.317	669	20050727	20080611
162270	FUCINO		41.983	13.6	650	19840801	20160109
162280	PRETURO	LIAP	42.367	13.3	667	19730101	19891204
162281	GRAN SASSO MTN RNG		42.45	13.55	2138	19850118	19900125
162283	GRAN SASSO MTN RNG	LIQI	42.45	13.7	2138	19900208	20090603
162290	GRAN SASSO MTN RNG		42.45	13.7	2138		20050511
162300	PESCARA	LIBP	42.432	14.181	14.6	19650201	20160109

		•	1			1	
162310	MONTE S. ANGELO	LIBE	41.7	15.95	844	20040917	20160109
162320	TERMOLI	LIBT	42	15	44	19730101	20160109
162330	GUIDONIA		42	12.733	90	20050727	20120531
162340	GUIDONIA	LIRG	41.99	12.741	88.1	19660923	20160108
162350	URBE	LIRU	41.952	12.499	16.8	19730101	20160109
162380	ROMA/CENTOCELLE		41.867	12.567	53	20050727	20120531
162390	CIAMPINO	LIRA	41.799	12.595	130.1	19511001	20160109
162400	ROME		41.9	12.483	95	19280101	20040826
162420	FIUMICINO	LIRF	41.804	12.251	4.6	19650701	20160109
162430	LATINA	LIRL	41.542	12.909	28.3	19440301	20160109
162440	FROSINONE (IT-AFB)	LIRH	41.633	13.3	181	19730101	20160109
162450	PRATICA DI MARE	LIRE	41.659	12.445	12.5	19660923	20160109
162460	FROSINONE		41.633	13.3	186	20050727	20090206
162470	LATINA		41.55	12.9	26	20050727	20160109
162490	CAPE CIRCEO	LIQT	41.217	13.05	3	19730101	20160109
162520	CAMPOBASSO	LIBS	41.567	14.65	807	19650201	20160109
162530	GRAZZANISE	LIRM	41.061	14.082	8.8	19440331	20160109
162580	MONTE S. ANGELO		41.7	15.95	848	19730101	20160109
162591	PARMA	LIMP	44.824	10.296	49.1	20040525	20160109
162592	LEVALDIGI	LIMZ	44.547	7.623	386.2	20040510	20160109
162593	MONTICHIARI	LIPO	45.429	10.331	108.5	20040510	20160109
162600	GINA LISA	LIBF	41.433	15.533	81	19570701	20160109
162603	FOGGIA/GINO LISA &	LIBF	41.433	15.533	80	19430930	19460915
162610	AMENDOLA	LIBA	41.541	15.718	55.8	19440131	20160109
162620	TREVICO		41.05	15.233	1093	20050727	20120531
162630	TREVICO	LIRT	41.05	15.233	1093	19730101	20160109
162640	MARINA DI GINOSA		41.133	15.517	514	19730101	19900403
162660	VIESTE		41.883	16.167	4	19730101	20160109
162700	BARI	LIBD	41.133	16.767	53.9	19431207	20160109
162710	BARI		41.117	16.883	11	20050727	20120531
162800	PONZA ISLAND	LIQZ	40.917	12.95	185	19650201	20160109
162810	PONZA		40.917	12.95	185	20050831	20081003
162880	CASERTA		41.067	14.317	62	20050727	20160109
162890	NAPOLI/CAPODICHINO	LIRN	40.85	14.3	72	19511001	20150602
162894	NAPLES	KQNN	40.9	14.3	93	19861104	20160109
162920	PONTECAGNANO		40.617	14.917	39	19730101	20090206
162923	PONTECAGNANO	LIRI	40.62	14.911	37.5	19930129	20160109
162940	CAPRI ISLAND	LIQC	40.55	14.25	269	19730101	20160109
162950	CAPRI		40.55	14.2	161	20050728	20060529
163000	POTENZA	LIBZ	40.633	15.8	843	19650201	20070213
163100	CAPE PALINURO	LIQK	40.017	15.283	185	19640811	20160109
163120	GIOIA DEL COLLE	LIBV	40.768	16.933	361.8	19440229	20160109
163140	MATERA		40.65	16.7	498	20050727	20160109
163160	LATRONICO		40.083	16.017	896	19740902	20160109

163200 CASALE	_				1		1	1
163200 CASALE	163170	LATRONICO	LIBU	40.083	16.017	896	20050727	20160109
163240 GROTTAGLIE	163180	MARTINA FRANCA		40.633	17.217	414	19730915	20160109
163250 MARINA DI GINOSA	163200	CASALE	LIBR	40.658	17.947	14.3	19431129	20160109
163300 TARANTO	163240	GROTTAGLIE	LIBG	40.518	17.403	65.5	19430927	20160109
163320 LECCE	163250	MARINA DI GINOSA	LIBH	40.433	16.883	12	19670317	20160109
163330 LECCE	163300	TARANTO		40.467	17.233	22	19310104	19391231
163340 OTRANTO	163320	LECCE	LIBN	40.239	18.133	47.5	19431231	20160109
163360 BONIFATI	163330	LECCE		40.233	18.133	48	20050727	20160109
163370 BONIFATI (CAPE) LIBW 39.583 15.883 488 19650201 20160109 163380 CALOPEZZATI LICM 39.567 16.8 179 19740808 19810220 163383 CALOPEZZATI LICM 39.55 16.8 179 19740808 19810220 163440 MONTE SCURO 39.333 16.4 1677 19730101 20160109 163445 SCURO MOUNTAIN LIBQ 39.333 16.4 1720 20070806 20160109 163450 MONTE SCURO 39.333 16.4 1677 20061024 20120531 163500 CROTONE LIBC 38.997 17.08 158.8 19570701 20160109 163510 CROTONE LIBC 38.997 17.08 158.8 19570701 20160109 163500 SANTA MARIA DI LEUC LIBY 39.817 18.35 112 19650201 20160109 163600 SANTA MARIA DI LEUC LIBY 39.817 18.35 112 19650201 20160109 163630 CARANZARO 38.90 16.642 11.9 19771101 20160109 163680 VIBO VALENTIA 38.667 16.1 520 19730725 19810711 164000 USTICA SANTA MARIA LICU 38.7 13.183 251 19570701 20160109 164000 VALENTIA 38.667 16.1 520 19730725 19810711 164000 USTICA 38.7 31.183 243 20051017 20120529 164050 PALERMO LICU 38.176 13.091 19.8 19640811 20160109 164000 PALERMO BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164160 SOLA SALINA 38.567 14.85 46 19840501 20160109 164200 MESSINA LICF 38.21 15.55 51 1931010 20160109 164200 MESSINA LICF 38.21 15.55 51 1931010 20160109 164200 MASSALA LICR 38.071 15.488 7.3 1965020 20160109 164200 MASSALA LICR 37.717 13.433 1035 19730101 20160109 164300 MARSALA LICR 37.717 13.433 1035 19730101 20160109 164300 MARSALA LICK 37.717 13.433 1035 19730101 20160109 164300 MARSALA LICK 37.717 13.433 1035 19730101 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164300 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164530 GLA LICL 37.083 14.217 33 1943000 20160109 164530 GLA LI	163340	OTRANTO		40.1	18.483	80	19730101	20160109
163380 CALOPEZZATI	163360	BONIFATI		39.583	15.9	485	20060201	20120531
163383 CALOPEZZATI	163370	BONIFATI (CAPE)	LIBW	39.583	15.883	485	19650201	20160109
163440 MONTE SCURO	163380	CALOPEZZATI	LICM	39.567	16.8	179	19740808	19810220
163445 SCURO MOUNTAIN	163383	CALOPEZZATI	LICM	39.55	16.8	179	19930312	19961009
163450 MONTE SCURO	163440	MONTE SCURO		39.333	16.4	1677	19730101	20160109
163500 CROTONE	163445	SCURO MOUNTAIN	LIBQ	39.333	16.4	1720	20070806	20160109
163510 CROTONE	163450	MONTE SCURO		39.333	16.4	1677	20061024	20120531
163600 SANTA MARIA DI LEUC	163500	CROTONE	LIBC	38.997	17.08	158.8	19570701	20160109
163620 LAMEZIA TERME	163510	CROTONE		39	17.083	155	20050727	20120531
163640 SERRALTA DI S. VITO 38.75 16.367 997 19730101 20160109 163650 CATANZARO 38.9 16.6 358 20060711 20160109 163680 VIBO VALENTIA 38.667 16.1 520 19730725 19810711 164000 USTICA ISLAND LICU 38.7 13.183 251 19570701 20160109 164050 PALERMO LICJ 38.176 13.091 19.8 19640811 20160109 164090 PALERMO BOCCADIFALCO LICP 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 1642160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164220 REGGIO CALABRIA LICF 38.21 15.55 51 19310101 20160109	163600	SANTA MARIA DI LEUC	LIBY	39.817	18.35	112	19650201	20160109
163650 CATANZARO 38.9 16.6 358 20060711 20160109 163680 VIBO VALENTIA 38.667 16.1 520 19730725 19810711 164000 USTICA ISLAND LICU 38.7 13.183 251 19570701 20160109 164010 USTICA 38.7 13.183 243 20051017 20120529 164050 PALERMO LICJ 38.176 13.091 19.8 19640811 20160109 164090 PALERMO BOCCADIFALCO 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164000 MESSINA LICF 38.2 15.55 51 19310101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI LICX 37.717 13.433 1035 20050727 20120531 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164500 ENNA LICE 37.567 14.281 965 20050727 20120531 164500 CATANIA/SIG	163620	LAMEZIA TERME	LICA	38.905	16.242	11.9	19771101	20160109
163680 VIBO VALENTIA	163640	SERRALTA DI S. VITO		38.75	16.367	997	19730101	20160109
164000 USTICA ISLAND LICU 38.7 13.183 251 19570701 20160109 164010 USTICA 38.7 13.183 243 20051017 20120529 164050 PALERMO LICJ 38.176 13.091 19.8 19640811 20160109 164090 PALERMO BOCCADIFALCO 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164300 MARSALA JARERARIA JARERARIA <t< td=""><td>163650</td><td>CATANZARO</td><td></td><td>38.9</td><td>16.6</td><td>358</td><td>20060711</td><td>20160109</td></t<>	163650	CATANZARO		38.9	16.6	358	20060711	20160109
164010 USTICA 38.7 13.183 243 20051017 20120529 164050 PALERMO LICJ 38.176 13.091 19.8 19640811 20160109 164090 PALERMO BOCCADIFALCO 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164300 MARSALA JARIA 37.817 12.488 7.3 19650201 20160109 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109	163680	VIBO VALENTIA		38.667	16.1	520	19730725	19810711
164050 PALERMO LICJ 38.176 13.091 19.8 19640811 20160109 164090 PALERMO BOCCADIFALCO 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164300 MARSALA LICT 37.911 12.488 7.3 19650201 20160109 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.517 13.083 125 19431010 20120531	164000	USTICA ISLAND	LICU	38.7	13.183	251	19570701	20160109
164090 PALERMO BOCCADIFALCO 38.117 13.317 123 20060710 20120531 164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 SCIACCA 37.517 13.083 125 19431010 20120531	164010	USTICA		38.7	13.183	243	20051017	20120529
164100 BOCCADIFALCO LICP 38.111 13.313 105.2 19430807 20090111 164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164300 MARSALA LICT 37.911 12.488 7.3 19650201 20160109 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI JRANA	164050	PALERMO	LICJ	38.176	13.091	19.8	19640811	20160109
164150 ISOLA SALINA 38.567 14.85 46 19840501 20160109 164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.717 13.433 1035 20050727 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164540<	164090	PALERMO BOCCADIFALCO		38.117	13.317	123	20060710	20120531
164160 ISOLA STROMBOLI 38.8 15.233 5 19730101 20160109 164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.517 13.083 125 19431010 20120531 164360 SCIACCA 37.517 13.083 125 19431010 20120531 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109	164100	BOCCADIFALCO	LICP	38.111	13.313	105.2	19430807	20090111
164200 MESSINA LICF 38.2 15.55 51 19310101 20160109 164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164540 GELA LICL 37.083 14.217 33 19430902 20160109 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 31.1 19790101 20040930 <td>164150</td> <td>ISOLA SALINA</td> <td></td> <td>38.567</td> <td>14.85</td> <td>46</td> <td>19840501</td> <td>20160109</td>	164150	ISOLA SALINA		38.567	14.85	46	19840501	20160109
164220 REGGIO CALABRIA LICR 38.071 15.652 29.3 19730101 20160109 164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109	164160	ISOLA STROMBOLI		38.8	15.233	5	19730101	20160109
164290 TRAPANI BIRGI LICT 37.911 12.488 7.3 19650201 20160109 164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.517 13.083 125 19431010 20120531 164360 SCIACCA 37.517 13.083 125 19431010 20120531 164500 GIBILMANNA 37.983 14.017 998 20050727 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA LICL 37.083 14.217 33 19430902 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164200	MESSINA	LICF	38.2	15.55	51	19310101	20160109
164300 MARSALA 37.817 12.467 2 19570701 19581231 164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.717 13.433 1035 20050727 20120531 164360 SCIACCA 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164540 GELA LICL 37.083 14.217 33 19430902 20160109 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164220	REGGIO CALABRIA	LICR	38.071	15.652	29.3	19730101	20160109
164340 PRIZZI LICX 37.717 13.433 1035 19730101 20160109 164350 PRIZZI 37.717 13.433 1035 20050727 20120531 164360 SCIACCA 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164290	TRAPANI BIRGI	LICT	37.911	12.488	7.3	19650201	20160109
164350 PRIZZI 37.717 13.433 1035 20050727 20120531 164360 SCIACCA 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164300	MARSALA		37.817	12.467	2	19570701	19581231
164360 SCIACCA 37.517 13.083 125 19431010 20120531 164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164340	PRIZZI	LICX	37.717	13.433	1035	19730101	20160109
164420 GIBILMANNA 37.983 14.017 998 20050727 20160109 164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164350	PRIZZI		37.717	13.433	1035	20050727	20120531
164500 ENNA LICE 37.567 14.283 965 19730101 20160109 164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164360	SCIACCA		37.517	13.083	125	19431010	20120531
164530 GELA LICL 37.083 14.217 33 19430902 20160109 164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164420	GIBILMANNA		37.983	14.017	998	20050727	20160109
164540 GELA 37.083 14.217 65 20050727 20120531 164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164500	ENNA	LICE	37.567	14.283	965	19730101	20160109
164590 CATANIA/SIGONELLA LICZ 37.4 14.917 22 19430810 20160109 164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164530	GELA	LICL	37.083	14.217	33	19430902	20160109
164594 SIGONELLA KQNS 37.4 14.917 31.1 19790101 20040930	164540	GELA		37.083	14.217	65	20050727	20120531
	164590	CATANIA/SIGONELLA	LICZ	37.4	14.917	22	19430810	20160109
164600 CATANIA FONTANAROSSA LICC 37.467 15.066 11.9 19431028 20160109	164594	SIGONELLA	KQNS	37.4	14.917	31.1	19790101	20040930
	164600	CATANIA FONTANAROSSA	LICC	37.467	15.066	11.9	19431028	20160109

164640	SIRACUSA		37.05	15.767	2	20050727	20160109
164650			36.967	14.95	639	20050727	20160109
164690			37.933	16.05	118		20160109
164700		LICG	36.817	11.969	193.5	19430620	20160109
164710		LICO	36.817	11.967	193.5	20050727	20090206
164750		LICB	36.983	14.617	210	20050727	20160109
164751		LICB	36.983	14.583	220	19840323	19860430
164800	, ,	LICO	36.683	15.133	51	19660101	20160109
	LAMPEDUSA	LICD	35.498	12.618	21.3	19660104	20160109
	LAMPEDUSA	EICD	35.5	12.6	50	20050727	20120531
165020	ASINARA ISLAND	LIER	41.117	8.317	115	19701001	19751209
	PORTO TORRES	EIER	40.839	8.405	8	20151207	20160109
165060		LIEG	41.217	9.4	170	19701001	20021029
165200		LIEA	40.632	8.291	26.5	19570701	20160109
165220		LIEH	40.567	8.167	205	19750717	20160109
165230			40.567	8.167	204	20050727	20120528
165240			40.267	8.767	586	19730101	20090206
165300			40.933	9.5	2.1	19310104	19750910
165310	OLBIA COSTA SMERALDA	LIEO	40.899	9.518	11.3	19691117	20160109
165320	MONTE LIMBARA		40.85	9.167	1363	20050727	20120531
165370	FONNI		40.117	9.25	992	20050727	20080221
165380	FONNI	LIEN	40.117	9.25	1029	19730301	20061116
165390	CAPE FRASCA	LIEF	39.75	8.467	92	19660104	20160109
165410	PERDASDEFOGU	LIEP	39.667	9.433	645	19730101	20160108
165420	CAPE S. LORENZO	LIEL	39.5	9.617	22	19730101	20160108
165430	CAPO S. LORENZO		39.5	9.633	3	20050727	20081125
165440	MOUNT SERPEDDI		39.367	9.3	1067	19730101	19780812
165450	PERDASDEFOGU		39.667	9.45	609	20050727	20120531
165460	DECIMOMANNU	LIED	39.354	8.972	30.5	19660923	20160109
165480	CARLOFORTE		39.133	8.317	15	19780914	20020327
165490	CARLOFORTE		39.133	8.3	12	19850301	20081023
165500	CAPE BELLAVISTA	LIEB	39.933	9.717	156	19660104	20160109
165600	ELMAS	LIEE	39.251	9.054	4	19431101	20160109
165635	LAMEZIA TERME		38.917	16.233	12	19770125	19830627
165640	CAPE CARBONARA	LIEC	39.1	9.517	118	19730101	20160109
165643	BOGUS ITALIAN	LIEZ				19890310	19900901
165650	CAPO CARBONARA		39.1	9.517	118	20050805	20120525
165700	TEULADA		38.983	8.65	50	20080115	20120529
165820	PADOVA		45.7	11.85	15	20070822	20090206
165840	BARI PALESE		41.133	16.767	46	20070822	20090206
165850	CAGLIARI S AVENDRACE		39.25	9.05	17	20070822	20080406
165860	TRIPANI BIRGI		37.917	12.5	5	20080414	20080514

CALMET.INP

File di input CALMET usato per ricostruire il campo 3D (generato da chi usa

CALMET) in questo caso si tratta del file Bettogli.INP

CALPUFF.INP

File di input CALPUFF, è il file di input del caso studio creato con MMS Calpuff, si trova nella cartella di progetto ("nome del caso studio.inp")

PTEMARB.DAT

file esterno delle emissioni variabili, viene usato solo se la variabilità temporale delle emissioni non può essere descritta usando gli schemi di schedulazione temporale costanti es: ciclo sulle 24 ore, sul mese ...). Potrebbe non esserci, ma se è stato utilizzato si trova anche lui nella cartella di progetto.

TERRAD = 0.5 km

Raggio di influenza delle caratteristiche orografiche cioè la distanza da ogni recettore fino alla quale considerare la presenza di rilievi orografici per valutarne l'influenza su quel recettore. Nel caso in esame il valore di 6 km permette di considerare mediamente sempre (cioè in tutti i recettori di griglia) sia la presenza del rilevo a NE che la presenza della fascia costiera.

RMAX1 = 25 km

Raggio di influenza delle stazioni di superficie nell'interpolazione del campo meteo iniziale. Questo parametro permette di pesare maggiormente in questo procedimento di interpolazione , una stazione piuttosto che un'altra rispetto alla posizione relative dei recettori di griglia; di fatto è il raggio che determina l'area di significatività di una stazione meteo. Ogni stazione meteo dovrebbe di fatto poter avere un suo proprio raggio di influenza ma CALMET attualmente non lo consente. Il valore usato di 25 km rappresenta un raggio di significatività "medio" risultante dall'ipotesi che le stazioni SYNOP presenti sul territorio nazionale abbiano una distribuzione mediamente uniforme sull'area nazionale.

Nel caso particolare questa distanza permette di considerare significative sul dominio meteo le due stazioni SYNOP di Sarzana/Luni e dell'isola della Palmaria

NOTA: il campo iniziale prodotto per interpolazione viene poi modificato considerando la presenza eventuale dell'orografia (inserendo quindi a seconda del valore di TERRAD, l'effetto delle eventuali pendenze, fattori di "blocking" e altro) generando il campo meteo denominato STEP1 (o "first guess")

RMAX2 = 300 km

Raggio di influenza delle stazioni profilometriche nell'interpolazione del campo meteo STEP1 . Stesso significato del parametro precedente ma per le stazioni profilometriche. Va sottolineato che l'unica stazione profilometrica presente sul Tirreno è Pratica di Mare noi, per dare una caratterizzazione più specifica di bacino abbiamo inserito anche la stazione profilometrica di Ajaccio in Corsica

R1=0.2 km

Peso che viene assegnato alla variabili sitospecifiche di superficie nella fase di reinserimento (STEP2) delle osservazioni nel campo STEP1. In sostanza poiché il campo STEP1, come descritto prima, è prodotto per interpolazione matematica rischia di perdere le caratteristiche iniziali contenute nelle osservabili meteo "misurate" dai sensori, per recuperare queste caratteristiche sito specifiche CALMET prevede uno SPEP2 dove i valori "misurati" vengono reinseriti nel campo iniziale STEP1. In questo contesto R1 rappresenta la distanza dalla stazione di misura alla quale i valori misurati ed i valori interpolati (STEP1) hanno lo stesso peso cioè se la distanza di un recettore da una sorgente è minore di R1 il peso della sorgente "domina" sul campo interpolato ed il suo valore iniziale interpolato viene rimodulato (sempre con peso 1/r2) al valore misurato mentre se la distanza recettore sorgente è maggiore di R1 "domina "il valore interpolato.

Se il valore R1 è troppo piccolo si rischia di minimizzare l'importanza del dato misurato, se il valore di R1 è troppo grande si distrugge però il lavoro di interpolazione fatto nella fase STEP1.

Nel caso specifico di Avenza è stato scelto il valore di 15 km in moda da mantenere nel centro del dominio il contributo SPEP1 di entrambe le due stazioni SYNOP prima indicate mentre avvicinandosi ai confini NW e SW diventano sempre più pesanti (ma in modo armonizzato) i contributi rispettivamente di Sarzana e della Palmaria.

NOTA: se verranno in futuro usate le due stazioni della rete toscana questo parametro dovrà essere opportunamente modificato.

Ha lo stesso significato descritto per R1 ma per le stazioni profilometriche. Nel caso specifico questa scelta, essendo i punti di profilo molto distanti e quindi non essendoci un particolare effetto sitospecifico, da più peso al campo STEP 1 interpolato perché negli starati di superficie è stata considerata l'estrapolazione in quota secondo la teoria della similarità (IEXTRP = 4) delle stazioni di superficie (Sarzana e Palmaria) mentre negli stati più elevati l'interpolazione iniziale descrive più correttamente la situazione sinottica del bacino.

Il valore di questo indice definisce se e come le osservabili misurate alla superficie (i valori delle stazioni SYNOP di superficie) debba o meno e come estrapolate in verticale per contribuire all'interpolazione verticale dei profili. In questo caso il valore 4 stabilisce che tali valori vengono estrapolati in verticale usando la teoria della similarità di Monin-Obichov, metodologia attualmente ritenuta come più significativa dal punto di vista mocrometeorologico

è un parametro che determina il peso relativo delle osservabili di superficie rispetto alle osservabili profilometriche nell'inerpolazione: se per uno strato BIAS=-1 nell'interpolazione deli valori meteo di quello strato peseranno solo le variabili di superficie mentre se BIAS = 1 peseranno solo le variabili profilometriche . Il BIAS va specificato per ogni strato verticale, negli 8 strati considerati nel campo di Bettogli la distribuzione dei BIAS è la seguente:

BIAS = -1, -1, -.75, -.5, -.25, 0, .5, 1

R2 = 50 km

IEXTRP = 4

BIAS

cioè il peso delle misure profilometriche viene gradatamente aumentato con la quota sul suolo

Per quanto riguarda la richiesta di un profilo verticale locale eventualmente ricavato dall'applicazione di un LAM (Modello ad Area Limitata) CALMET stesso lo è quindi quando si ricostruisce il campo meteo 3D a partire dai dati reali dei profili verticali misurati nelle stazioni SYNP Profilometriche non si fa altro che ricostruire in ogni cella del dominio 3D un profilo verticale quindi questa richiesta dovrebbe essere automaticamente soddisfatta dalla ricostruzione del campo 3D

I valori di orografia utilizzati sono stati estratti dal DTM NASA SRTM3 mentre i valori di uso del suolo sono stati ottenuti dal Corine Land Cover 2000 come richiesto nella comunicazione ARPA