Studio di Geologia dr Geologo Roberto Andrei Via Spondarella, 10/e – 54033 Carrara

tel: 0585/842411

e-mail:roberto.andrei3@gmail.com

COMUNE DI CARRARA Società CAVE DI SPONDA S.r.l.

Piano di coltivazione della cava n. 64 "La Madonna"

Rilevamento strutturale dei fronti di escavazione e classificazione dell'ammasso roccioso nell'area di progetto ed in suo intorno significativo

Relazione Tecnica

il Geologo

<u>INDICE</u>

1)	INTRODUZIONE	pag. 3
2)	RILEVAMENTO STRUTTURALE DELL'AMMASSO ROCCIOSO	pag. 3
	NELL'AREA DI PROGETTO ED IN UN SUO INTORNO SIGNIFICATIVO	
3)	CLASSIFICAZIONE DELL'AMMASSO ROCCIOSO E	pag. 15
	DETERMINAZIONE DEI RELATIVI PARAMETRI GEOMECCANICI	
A.	LLEGATO A: Stendimenti	pag. 28

1) INTRODUZIONE

Per incarico della Società CAVE DI SPONDA è stata redatta la presente relazione illustrativa delle caratteristiche geomeccaniche di un intorno significativo della cava denominata "La Madonna" e costituisce elaborato a supporto del progetto di coltivazione del complesso estrattivo; il tutto meglio descritto nella Relazione Tecnica del progetto di coltivazione.

Scopo della presente indagine è quello di determinare le caratteristiche strutturali dell'ammasso roccioso interessato dall'escavazione di progetto e di un suo intorno significativo mediante il rilevamento strutturale di dettaglio e di evidenziando i sistemi di fratturazione individuati.

In linea generale, il complesso estrattivo è caratterizzato da un cantiere a cielo aperto ed un cantiere in sotterraneo; per quanto riguarda la descrizione della situazione morfologica attuale e di progetto del complesso estrattivo si rimanda alla specifica trattazione riportata nella sopracitata Relazione tecnica del progetto di coltivazione.

A supporto dell'indagine svolta sono stati redatti i seguenti elaborati grafici:

() Tav. RS1 – Carta della fratturazione di un intorno significativo scala 1:500

dell'area di progetto

() Tav. RS2 – Sezioni geostrutturali scala 1:1000

2) <u>RILEVAMENTO STRUTTURALE DELL'AMMASSO ROCCIOSO NELL'AREA DI</u> PROGETTO ED IN UN SUO INTORNO SIGNIFICATIVO

2.1) RILEVAMENTO DELLE DISCONTINUITÀ

La Carta della fratturazione (Tav. 1) e le Sezioni geostrutturali (Tav. 2) evidenziano lo stato di fratturazione dell'ammasso roccioso che caratterizza l'area che sarà interessata dal Piano di Coltivazione e delle sue vicinanze.

Le caratteristiche di giacitura delle superfici di discontinuità presenti nell'ammasso roccioso sono state determinate applicando la metodica I.S.R.M. nell'esecuzione di:

- n. 27 stendimenti orizzontali eseguiti dallo scrivente in tutti i fronti residui di escavazione accessibili in passato ed attualmente in condizioni di sicurezza;
- n. 3 stendimenti da archivio, eseguiti durante lo studio geostrutturale nella confinante cava "Mandria" a supporto del Piano di Coltivazione, redatto dallo scrivente nel 2017;

la loro ubicazione è riportata nella Tav. RS1, in scala 1:500.

In tutto l'ammasso roccioso esaminato sono stati rilevati i parametri giaciturali e le caratteristiche di un totale di 366 superfici di discontinuità e 7 aree ad elevata densità di fratturazione ("finimenti") su un totale di 616.0 m di stendimento.

Nelle tabelle dell'Allegato A sono riportati i risultati del rilevamento strutturale.

2.1.2) Elaborazione dei dati strutturali

Nell'area esaminata è stata rilevata:

■ la scistosità di piano assiale S₁ corrispondente al "verso di macchia" ed alla giacitura dei livelli fillosilicatici riportati nelle tabelle dell'Allegato A (foto n. 1)

 l'originaria stratificazione S₀ desunta dalla giacitura del sistema di discontinuità K7 illustrata nelle tabelle 2, 3 e 4.

Foto n. 1: fronte principale del complesso estrattivo, in evidenza, il "verso di macchia" e i livelli fillosilicatici che individuano la S₁

La S_0 si presenta tendenzialmente a giacitura costante mentre la scistosità S_1 presenta immersione (tendenzialmente SSW) ed inclinazione variabili.

In tabella 1 è indicata la giacitura media di S_0 ed il trend di variazione di S_1 con definizione di $S_1(a)$ e $S_1(b)$.

Tab. 1

Scistosità	Giacitura media				
	imm	incl			
S_0	320	28°			
$S_1(a)$	190/210	45° - 55°			
S ₁ (b)	215/240	50° - 60°			

Nell'area esaminata si evidenzia la presenza di una fratturazione polispaziale, caratteristica comune a tutti i giacimenti lapidei, che separa porzioni prismatiche di roccia di dimensioni variabili: le fratture che separano le varie porzioni di roccia sono dette in gergo "peli", alcuni sistemi di discontinuità hanno differenze giaciturali che ne determinano un differente comportamento geomeccanico.

Sulla base di tale criterio classificativo i sistemi di discontinuità che caratterizzano l'ammasso roccioso rilevato possono essere suddivisi in 8 famiglie a loro volta suddivise, per un totale di 12 sistemi di giunti, la cui giacitura media, numero di giunti di appartenenza e stendimenti di rilevazione sono riportati in tabella 2 per quanto riguarda il complesso estrattivo nella sua totalità e nelle tabelle 3 e 4 riferite rispettivamente al cantiere a cielo aperto ed in sotterraneo.

<u>Tab. 2</u>

			Ta	bella riassunti	iva fro	nti cava n. 64 "	La Madonna	"
n° totale giunti	366	Lung	gh. total	e stendimenti	(m)	616.0		
Sistemi di								
discontinuità	imm	incl	%	apertura	JRC	frequenza	n° giunti	Stendimenti
			-	(mm)		(1/cm)	0	
6: 1 1/4	240	F-2	546		0.4		200	
Sistema K1	218	53	54.6	8.5	8.1	0.003247	200	tutti, esclusi St.25,StAr1,StAr2,StAr3
								St10, St11, St12, St13, St14, St15, St16,
Sistema K2	311	80	10.4	1.4	7.6	0.000617	38	St17, St12, 3t13, 3t14, 3t13, 3t10, 3t17,
0.000						0.00000		
								St1, St4, St5, St7, St8, St10, St11, St16,
Sistema K3(a)	32	46	6.6	0.5	5.5	0.000390	24	St18
Sistema K3(b)	74	38	0.8	1.0	5.0	0.000049	3	St9
				-				
								St3, St9, St14, St16, St19, StAr1, StAr2,
Sistema K4(a)	184	77	7.4	2.0	7.1	0.000438	27	StAr3
Sistema K4(b)	37	82	2.5	0.7	7.9	0.000146	9	St15, St19
Sistema K4(c)	16	84	2.5	0.7	6.1	0.000146	9	St9, St14
Sistema K4(C)	10	04	2.3	0.7	0.1	0.000140] 3	319, 3114
Sistema K5(a)	228	13	5.2	0.2	7.1	0.000308	19	St15, St18, StAr1, StAr2, StAr3
Sistema K5(b)	30	10	3.0	0.3	7.4	0.000179	11	St15
Sistema K6	114	46	4.37	1 1	6.6	0.000360	16	St3, St7, St12, St14, St15, St18, StAr1, StAr3
Sistema NO	114	40	4.57	1.1	0.0	0.000260	10	SLAIS
Sistema K7	320	28	0.82	0.4	8.3	0.000049	3	St20, St27
Sistema K8	112	77	1.91	0.5	9.6	0.000114	7	St20, St27

<u>Tab. 3</u>

Tabella riassuntiva fronti a cielo aperto cava n. 64 "La Madonna" n° totale giunti 306 Lungh. totale stendimenti (m) 506.2 Sistemi di discontinuità imm incl % apertura JRC frequenza n° giunti Stendimenti Stendimenti (m) 506.2	
l discontinuita imm incl. % apertura IRC. treguenza n° giunti	
	nti
(mm) (1/cm)	
Sistema K1 220 52 55.6 9.3 8.1 0.003358 170 tutti (da St.1 a	St.19)
Sistema K2 310 80 11.8 1.4 7.6 0.000711 36 St10, St11, St12, St13, St13	
Sistema K3(a) 38 48 6.5 0.9 8.0 0.000395 20 St1, St4, St5, St7, St8	
Sistema K3(b) 74 38 1.0 1.0 5.0 0.000059 3 St9	
Sistema K4(a) 202 78 5.2 2.9 6.8 0.000316 St3, St9, St14, St16, StAr2, StA	
Sistema K4(b) 37 82 2.9 0.7 7.9 0.000178 9 St15, St1	9
Sistema K4(c) 10 72 2.3 0.9 5.6 0.000138 7 St9, St14	
Sistema K5(a) 230 13 5.9 0.3 7.1 0.000356 18 St15, St18, StAr1, S	tAr2, StAr3
Sistema K5(b) 30 10 3.6 0.3 7.4 0.000217 11 St15	
Sistema K6 114 46 5.23 1.1 6.6 0.000316 16 St3, St7, St12, St14, St2	.5, St18, StAr1,

<u>Tab. 4</u>

									
	Tabella riassuntiva fronti in galleria cava n. 64 "La Madonna"								
n° totale giunti	60	L	ungh. total	e stendimenti (n	1)	109.8			
Sistemi di									
discontinuità	imm	incl	%	apertura	JRC	frequenza	n° giunti	Stendimenti	
				(mm)		(1/cm)			
								St20, St21, St22,	
Sistema K1	207	57	50.0	3.6	7.7	0.002732	30	St23, St24, St26, St27	
Sistema K1	207	<u> </u>	30.0		7.7	0.002732	33	3(2)	
Sistema K2	334	89	3.3	0.1	7.0	0.000182	2	St21, St27	
0.000			0.0			5.000		0022,002	
Sistema K3(a)	29	60	6.7	1.8	9.5	0.000364	4	St20, St27	
, ,									
								St20, St23, St25,	
Sistema K4(a)	158	76	18.3	0.7	7.7	0.001002	11	St26, St27	
Sistema K4(c)	38	87	3.3	0.1	8.0	0.000182	2	St26, St27	
						I			
Sistema K5(a)	207	10	1.7	0.1	7.0	0.000091	1	St27	
Sistema K7	320	28	5.00	0.4	8	0.000273	3	St20, St27	
Sistema K8	112	77	11.67	0.5	9.6	0.000638	7	St20, St27	

2.1.3) Parametri caratteristici delle superfici di discontinuità

Il paragrafo illustra i risultati dell'elaborazione dei dati e la quantificazione dei parametri caratteristici dei vari sistemi di giunti individuati nell'ammasso roccioso.

La tabella 5 che segue riporta il numero dei giunti di ogni sistema di discontinuità rilevati in ogni singolo stendimento:

Tab. 5

Stendimento	n° .	n° .	n° .	n° .	n° .	n° .	n° .	n° .	n° .	n° .	n° .	n° .	
	giunti	giunti		giunti				giunti	giunti	giunti	-	giunti	
	K1	K2	K3(a)	K3(b)	K4(a)	K4(b)	K4(c)	K5(a)	K5(b)	K6	K7	K8	
St. 1	5		3										
St. 2	6												
St. 3	6				2					1			
St. 4	4		2										
St. 5	6		1										
St. 6	9												
St. 7	8		1							2			
St. 8	13		1										
St. 9	4			3	2		4						
St. 10	16	2	3										
St. 11	10	1	2										
St. 12	3	10								1			
St. 13	4	2											
St. 14	2	5			1		3			7			
St. 15	49	7				8		3	11	1			
St. 16	4	1	5		1			1					
St. 17	2	1											
St. 18	8	1	2							2			
St. 19	11				2	1							
St. 20	2		2		4						2	5	
St. 21	9	1											
St. 22	4												
St. 23	1				2								
St. 24	3												
St. 25					1								
St. 26	7				2		1						
St. 27	4	1	2		2		1	1			1	2	
St. Ar1					2			1		1			
St. Ar2		3			4			6					
St. Ar3		3			2			7		1			Totale
Totale	200	38	24	3	27	9	9	19	11	16	3	7	366

l'analisi dei risultati del rilevamento strutturale (par. 2.1.2 ed Allegato A) e della tabella 5 mostra che la distribuzione dei vari sistemi di discontinuità all'interno dell'ammasso roccioso esaminato è, in linea generale, disomogenea con una componente dominate costituita dalla famiglia K1 le cui discontinuità sono distribuite in quasi tutto il complesso estrattivo mentre le altre famiglie di discontinuità hanno distribuzione più limitata.

2.1.3.1) Spaziatura

La spaziatura è la distanza media tra due piani di frattura.

Viene definita come spaziatura dell'ammasso roccioso la distanza media tra tutti i piani di frattura misurati negli stendimenti e permette di analizzare la distribuzione areale della spaziatura e quindi la densità di fratturazione; essa viene espressa dal rapporto:

$$S = L/n \tag{1}$$

dove:

S: spaziatura

L: lunghezza totale degli stendimenti, pari a 616.0 m

n: numero delle superfici di frattura presenti negli stendimenti, pari a 366

il valore della spaziatura dell'ammasso roccioso rilevato è risultato pari a 1.68 m, con un valore ponderato di 2.32 m, ed indica che l'ammasso roccioso esaminato è caratterizzato da un medio grado di fratturazione.

La tabella che segue mostra i valori di spaziatura relativi ai cantieri a cielo aperto ed in galleria:

<u>Tab. 6</u>

Cantiere	Lunghezza	n° giunti	Spaziatura	Valore
	stendimenti		(m)	ponderato della
	(m)			spaziatura
				(m)
cielo aperto	506.2	306	1.65	2.48
galleria	109.8	60	1.83	2.19

2.1.3.2) Persistenza e terminazione

La persistenza, denominata anche *estensione*, è la lunghezza di ogni superficie di discontinuità compresa tra 2 estremità che possono essere altre superfici di frattura, tale caratteristica è anche detta persistenza; il rilevamento di dettaglio eseguito ha mostrato che la totalità delle discontinuità si interseca senza una precisa gerarchia.

Per questo motivo, per convenzione, si associa ai vari sistemi di fratturazione la lettera K seguita da un numero che ne indica la posizione nella scala delle densità.

Le terminazioni delle discontinuità sono utilizzate per il calcolo del cosiddetto "indice di terminazione" T_i:

$$T_{i} = \frac{100 N_{r}}{N_{r} + N_{d} + N_{x}}$$
 (2)

dove:

 N_r , N_d e N_x : numero totale di discontinuità la cui semitraccia termina rispettivamente in roccia, contro un'altra discontinuità o non è visibile.

L'indice T_i può essere calcolato sia cumulando tutti i dati che separatamente per i vari settori del complesso estrattivo.

Il valore di T_i relativo all'ammasso roccioso esaminato è riportato nella tabella che segue:

Tab. 7

Cava "La Madonna"	Indice di terminazione
	T_i
complesso estrattivo	18.9
cielo aperto	19.9
galleria	13.3

ed indica che, in linea generale, l'ammasso roccioso esaminato è costituito da blocchi ben sviluppati e distinti.

2.1.3.3) **Scabrezza**

La resistenza di un giunto è condizionata dal valore dell'angolo di inclinazione delle asperità e dal profilo di scabrezza o di rugosità.

Il parametro JRC in valore assoluto ed espresso mediante le classi di Barton è riportato, relativamente ad ogni sistema di discontinuità nelle tabelle relative agli stendimenti (Allegato A) e, relativamente ad ogni sistema di discontinuità, in tabella 2, 3 e 4 dalle quali si evince che la quasi totalità dei sistemi di discontinuità è caratterizzata da giunti con grado di rugosità medio/basso.

La tabella che segue illustra il valore medio ponderato di JRC relativo all'ammasso roccioso esaminato ed ai due cantieri (cielo aperto e galleria):

<u>Tab. 8</u>

Cava "La Madonna"	Valore medio ponderato di JRC	Classificazione di Barton (profilo)		
complesso estrattivo	7.6	4	6 – 8	
cielo aperto	7.7	4	6 – 8	
galleria	8.1	5	8 - 10	

utilizzando la tabella di figura 1 unitamente al profilo tipico di ogni giunto riportato nelle tabelle relative alle misurazioni negli stendimenti, è stato determinato il valore di JRC₂₀, relativo a tratti di discontinuità della lunghezza di 20 cm per ogni giunto rilevato:

	ation between Jr and JRCn scripts refer to block size (cm)	Jr	JRC20	JRC100
I	rough	4	20	- 11
п	smooth	3	14	9
ш	slickensided	2	11	8
	Stepped			
īv	rough	3	14	9
v	smooth	2	11	8
VI	slickensided	1.5	7	6
	Undulating			
VII	rough	1.5	2.5	2.3
VIII	smooth	1.0	1.5	0.9
ıx	slickensided	0.5	0.5	0.4
L	Planar	<u> </u>	L	<u> </u>

Figura 1: relazione tra Jr e JRC₂₀ (Barton e Bandis, 1992)

i valori risultanti di JRC₂₀ relativi ad ogni sistema di discontinuità sono riportati in tabella 8a, 8b e 8c.

Tab. 8a: complesso estrattivo

Famiglia di	Sistema di	JRC_{20}
discontinuità	discontinuità	
K1	K1	11
K2	K2	1.5
K3	K3(a)	1.5
	K3(b)	11
K4	K4(a)	1.5
	K4(b)	1.5
	K4(c)	1.5
K5	K5(a)	11
	K5(b)	11
K6	K6	11
K7	K7	1.5
K8	K8	1.5

Tab. 8b: cantiere a cielo aperto

Famiglia di	Sistema di	JRC ₂₀
discontinuità	discontinuità	
K1	K1	11
K2	K2	1.5
K3	K3(a)	1.5
	K3(b)	11
K4	K4(a)	1.5
	K4(b)	1.5
	K4(c)	1.5
K5	K5(a)	11
	K5(b)	11
K6	K6	11

Tab. 8c: cantiere in sotterraneo

Famiglia di	Sistema di	JRC ₂₀
discontinuità	discontinuità	
K1	K1	11
K2	K2	1.5
K3	K3(a)	1.5
K4	K4(a)	1.5
	K4(c)	1.5
K5	K5(a)	11
K7	K7	1.5
K8	K8	1.5

2.1.3.4) **Apertura**

L'apertura del giunto è un parametro che permette di formulare valutazioni sulle caratteristiche di resistenza allo scorrimento; essa condiziona, inoltre, la presenza di materiale di riempimento.

Gli studi iniziati da Patton (1966) hanno stabilito che, in presenza di giunti scabri a contatto tra loro ed in assenza di materiale di riempimento:

- () per bassi valori della sollecitazione normale, lo scorrimento lungo il giunto si attua con lo scavalcamento delle asperità
- () per valori elevati della sollecitazione normale, il lavoro necessario allo scavalcamento delle asperità è maggiore di quello necessario a tagliarle, pertanto sono i parametri geomeccanici della roccia intatta (angolo di attrito e coesione) che condizionano lo scorrimento lungo il giunto

Le discontinuità contenenti materiale di riempimento, sia esso un deposito a granulometria molto fine, a comportamento geotecnico incoerente, oppure un litotipo di alterazione superficiale dell'ammasso marmoreo (costituito da limi debolmente sabbiosi), possono essere suddivisi in tre categorie:

- (a) giunti tipo "non interfering": l'apertura del giunto è superiore all'altezza delle asperità
- (b) giunti tipo "interfering": l'apertura del giunto è prossima all'altezza delle asperità
- (c) giunti tipo "interlocking": l'altezza delle asperità è superiore all'apertura del giunto.

Nei giunti di tipo "non interfering" le caratteristiche di resistenza del giunto sono quelle proprie del materiale di riempimento.

Nei giunti di tipo "interfering" le caratteristiche di resistenza del giunto sono determinate sia da quelle del materiale di riempimento che del giunto; la resistenza allo scorrimento è legata inizialmente ai parametri geotecnici del riempimento e successivamente dai parametri geomeccanici caratteristici del giunto (JRC, JCS, angolo di attrito e coesione).

Nei giunti di tipo "interlocking" la resistenza allo scorrimento è legata ai parametri geomeccanici caratteristici del giunto (JRC, JCS, angolo di attrito e coesione).

Durante il rilevamento è stato rilevato che la quasi totalità dei giunti è in situazione di "interlocking" ed "interfering".

Nelle tabelle 2, 3 e 4 è riportato il valore medio di apertura di ogni sistema di discontinuità.

La tabella 9 e gli istogrammi di figura 2a, 2b e 2c mostrano la distribuzione dell'apertura dei giunti:

<u>Tab. 9</u>

Classi di apertura	n° di giunti nel	n° di giunti nel	n° di giunti nel
(mm)	complesso estrattivo	cantiere a cielo	cantiere in
		aperto	sotterraneo
0 - 1	260	220	40
2 - 5	70	51	19
6 - 10	15	15	
11 - 20	8	8	
21 - 100	11	10	1
> 100	2	2	

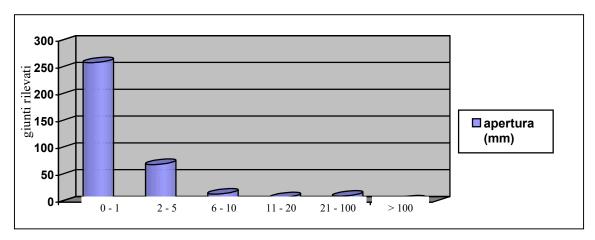


Figura 2a: distribuzione dell'apertura nell'ammasso roccioso rilevato nel complesso estrattivo

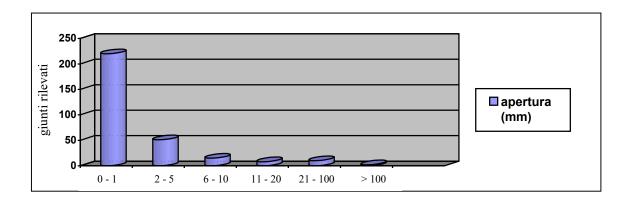


Figura 2b: distribuzione dell'apertura nell'ammasso roccioso rilevato nel cantiere a cielo aperto

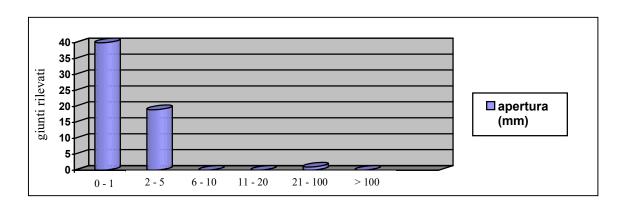


Figura 2c: distribuzione dell'apertura nell'ammasso roccioso rilevato nel cantiere in sotterraneo

la tabella 9 e le figure rivelano come la quasi totalità dei giunti in esposizione negli stendimenti ha apertura inferiore a 5 mm (90% del totale dei giunti rilevati), la maggior parte dei quali (78%) ha apertura inferiore a 1 mm; da tale dato si possono trarre le seguenti considerazioni:

 () si conferma quanto in precedenza affermato riguardo l'assenza di una significativa quantità di materiale di riempimento nelle discontinuità rilevate; pertanto si ritiene che la maggior parte dei giunti siano in situazione di "interlocking"; () si può ragionevolmente supporre la presenza di ponti di roccia all'interno della quasi totalità delle discontinuità; costituiscono eccezione le 5 aree di finimento e le discontinuità con apertura maggiore di 5 mm che costituiscono il 10% del totale dei giunti rilevati.

Nelle tabelle relative agli stendimenti (Allegato A) è riportato il valore medio di apertura relativo ad ogni discontinuità individuata negli stendimenti; nella tabella che segue è riportato il valore medio ponderato.

Tab. 10

Cava "La Madonna"	Valore medio
Cuva La Madomia	ponderato di apertura
	(mm)
complesso estrattivo	5.1
cielo aperto	5.7
galleria	2.1

2.1.3.5) Resistenza delle pareti dei giunti

Per la determinazione della resistenza delle pareti sono stati eseguiti tests sclerometrici sulle fratture che permettono il corretto posizionamento dello strumento.

Determinato il numero di rimbalzo N, mediante opportuni diagrammi di correlazione, è stato determinato il numero di rimbalzo R relativo al Martello di Schmidt e l'indice JCS (Joint Compressive Strenght) delle discontinuità mediante la seguente relazione:

$$log (JCS) = 8.8 \times 10^{-4} \gamma R + 1.01$$
 (3)

dove:

γ : peso di volume della roccia, in kN/mc

R: numero di rimbalzo

Il valore della resistenza a compressione dei giunti JCS è riportato nelle tabelle relative agli stendimenti (Allegato A).

Il valore massimo di JCS è risultato pari a 573.48 (giunto 8 dello stendimento St.1, giunto 7 dello stendimento St.9 87.27 Kg/cmq), il valore minimo di JCS è risultato inferiore a 100 Kg/cmq in corripondenza di alcune aree di finimento (stendimenti St.9 e St.10 dove predomina la componente fillosilicatica), ed il valore medio di JCS nell'ammasso roccioso esaminato è riportato in tabella 11.

<u>Tab. 11</u>

Cava "La Madonna"	Valore medio di JCS	Valore medio di JCS
	(Kg/cmq)	(MPa)
complesso estrattivo	412.47	40.45
cielo aperto	413.28	40.52
galleria	402.58	39.48

2.1.3.6) Riempimento

Quando la discontinuità è riempita da materiale, le caratteristiche di resistenza del giunto sono quelle proprie del materiale di riempimento.

A causa della ridotta apertura dei giunti e della scarsa presenza di riempimento non è stato possibile eseguire prove scissometriche in situ, atte a determinare i valori di resistenza al taglio del materiale di riempimento.

Come già affermato al paragrafo 2.1.3.4), che la quasi totalità dei giunti è in situazione di "interlocking" ed "interfering" e le caratteristiche della quasi totalità dei giunti determinano l'assenza di una significativa quantità di materiale di riempimento nelle discontinuità rilevate; costituiscono eccezione le 7 aree di finimento e le discontinuità con apertura maggiore di 5 mm (10% del totale dei giunti rilevati) per le quali potrebbe sussitere una situazione di "non interfering".

2.1.3.7) Condizioni idriche dell'ammasso roccioso

L'argomento riguardante la permeabilità dell'ammasso roccioso rilevato e la direzione di scorrimento sotterraneo delle acque di infiltrazione è stato affrontato nella Relazione idrogeologica alla quale si rimanda per la definizione del grado di permeabilità, le direzioni di scorrimento idrico sotterraneo e l'interferenza con le sorgenti ad uso idropotabile.

3) <u>CLASSIFICAZIONE DELL'AMMASSO ROCCIOSO E DETERMINAZIONE DEI</u> RELATIVI PARAMETRI GEOMECCANICI

Per la classificazione dell'ammasso roccioso nell'area esaminata sono stati utilizzati il sistema di Palmström per la determinazione del Rock Mass Index (RMi) ed il sistema classificativo di Bieniawski (1989) per la caratterizzazione dell'ammasso roccioso.

3.1) IL ROCK MASS INDEX (RMi)

Gli stendimenti eseguiti, della lunghezza totale di 616.0 m, hanno permesso di rilevare 366 giunti ed effettuare la caratterizzazione geomeccanica dell'ammasso roccioso che costituisce l'area interessata dalle soluzioni progettuali ed un suo intorno significativo.

Analizzando:

- la densità di fratturazione dell'ammasso roccioso esaminato, illustrata nelle tabelle 2, 3 e 4;
- la correlazione tra le varie famiglie di discontinuità;

si possono individuare 3 ordini principali di discontinuità presenti in tutto l'ammasso roccioso esaminato:

- a) Ordine 1: comprende la famiglia K1
- b) Ordine 2: comprende la famiglia K4
- c) Ordine 3: comprende la famiglia K2 relativamente all'intero complesso estrattivo ed al cantiere a cielo aperto e la famiglia K8 relativamente al cantiere in sotterraneo

ed una serie di giunti giunti "random" che caratterizzano le altre famiglie.

Ai paragrafi 3.2) e 3.3) e nell'Allegato A sono illustrate le caratteristiche giaciturali ed i parametri caratteristici delle discontinuità rilevate.

L'indice RMi è stato definito da Palmström (1995) con la relazione:

$$RMi = \sigma_c \times JP \tag{4}$$

dove:

RMi: Rock Mass Index

σ_c: resistenza a compressione uniassiale della roccia intatta; cautelativamente si considera il valore di JCS (JCSn) misurato in situ e pari a 693.54 Kg/cmq (68.01 MPa).

JP: "jointing parameter"; è un coefficiente di riduzione che rappresenta le dimensioni del blocco elementare e la condizione delle sue facce mediante le loro proprietà frizionali e le dimensioni delle discontinuità: esso varia da 0 (roccia molto fratturata) a 1 (roccia intatta).

Il diagramma di figura 3 evidenzia i parametri che intervengono nella determinazione di RMi:

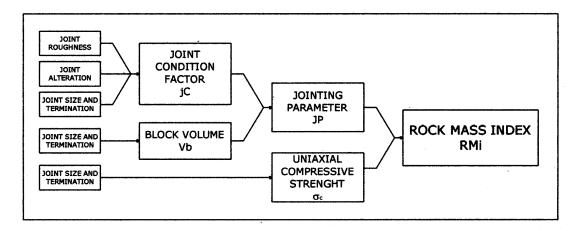


Figura 3: diagramma illustrativo dei parametri caratteristici per la determinazione di RMi

Per la determinazione di JP è stata utilizzata la seguente relazione:

$$JP = 0.2 jC^{1/2} x V_b^D$$
 (5)

dove:

JP: joint parameter

jC: fattore legato alle condizioni dei giunti, espresso dalla relazione

$$jC = jL \times jR/jA \tag{6}$$

jL: fattore di continuità dei giunti, espresso dal rapporto

$$jL = JCS_n / JCS_0$$
 (7)

dove:

JCS_n: parametro di resistenza relativo alla roccia intatta misurato in situ, risultato pari a 693.54 Kg/cmq (68.01 MPa)

 JCS_0 : parametro di resistenza relativo alla roccia intatta misurato in laboratorio, che come risulta dai risultati di prove fisico meccaniche da archivio risulta pari a 127.5 MPa sostituendo nella (7) risulta, sia per l'ammasso roccioso esaminato, jL = 0.53

- jR: fattore di rugosità dei giunti, corrispondente al parametro Jr del Q-system (Barton et alii, 1974) e si esprime in funzione del profilo tipico riportato, relativamente ad ogni discontinuità rilevata, nelle tabelle relative agli stendimenti (Allegato A) che di JRC₂₀.
- jA: fattore di alterazione dei giunti, corrispondente al parametro Ja del Q-system (Barton et alii, 1974), determinato utilizzando la tabella di figura 4:

4.	Joint Alteration Number	∳ approx.	J,
a) !	lock-wall contact (se mineral fillings, only costings)		
A	Tightly healed, hard, non-softening,impermeable filling, i.e., quartz or epidote		0.75
B	Unaltered joint walls, surface staining only	25-35°	1.0
С	Stightly altered joint wells. Non-softeningmineral coatings, sandy particles, clay-free disintagrated rock, etc.	25-30*	2.0
	Silty- or sendy-clay coatings, amail clay fraction (non-softening)	20-25*	3.0
E	Softering or low friction clay mineral coatings, i.e., keolinite or mice. Also chlorite, talc, gypsum, graphite, etc., and small quantities of swelling clays.	8-1 6°	4.0
b) 1	tock-well contact before 10 cm shear (thin mineral fl	Ninge)	
F	Sandy particles, clay-free disintegratedrock, etc.	25-30*	4.0
G	Strongly over-consolidated non-softeningclay mineral fillings (continuous, but <5mm thickness)	16-240	6.0
Н	Medium or low over-consolidation,softening, clay mineral fillings (continuous, but <5mm thickness)	12-16*	8.0
٠,	Swelling-clay fillings, i.e., montmorifionite (continuous,but <5mm thickness). Value of J _a depends on percent of swelling clay-size particles, and access to water, etc.	6-12*	8-12
	c) He rock-well contact when sheered (thick mineral (lilings)		
KLM	Zones or bands of disintegrated or crushed rock and clay (see G, H, J for description of clay condition)	8-24*	6, 8, o
*	Zones or bends of silty- or sandy-clay, small clay fraction (non-softening)		6.0
OPF	Thick, continuouszones or bands of clay (see G, H, J for description of clay condition)	8-24*	10, 13, or 13-2

Figura 4: rating del parametro Ja (Q-system)

e risultato pari a 1.0

V_b: volume del blocco unitario o elementare; per la cui determinazione si rimanda al paragrafo 3.1.1)

D: fattore di correzione dipendente da jC espresso dalla seguente formula:

$$D = 0.37 \text{ jC}^{-0.2} \tag{8}$$

sostituendo nella (6) e successivamente nella (8) sono stati determinati i valori di jC e D i quali, considerate le condizioni geostrutturali dell'ammasso roccioso esaminato e riferiti al cantiere a cielo aperto, in galleria ed all'intero complesso estrattivo sono risultati rispettivamente pari a 0.80 e 0.39

3.1.1) Determinazione di V_b

I piani che determinano il blocco unitario V_b sono costituiti dagli ordini illustrati in precedenza.

In presenza di 3 ordini di giunti il valore di V_b è definito dalla seguente relazione:

$$V_b = \beta \times J V^{-3}$$
 (9)

dove:

V_b: volume del blocco unitario o equivalente

Jv: numero dei giunti per mc; definito dalla relazione (12) (Palmström, 1982)

$$J_v = 1/S1 + 1/S2 + 1/S3 + N_r / (5 \times \sqrt{A})$$
 (10)

dove:

S1, S2, S3: spaziatura media degli ordini di discontinuità 1, 2 e 3

N_r: n° di giunti "random" che caratterizzano altre famiglie e pari a 83 (intero complesso estrattivo), 68 (cantiere a cielo aperto) e 10 (cantiere in sotterraneo).

A: area dell'ammasso roccioso rilevato è pari a 22466 mq (intero complesso estrattivo e cantiere a cielo aperto) ed a 1674 mq (cantiere in sotterraneo).

sostituendo nella (10) si ottiene il relativo valore di J_{v} per l'ammasso roccioso che caratterizza l'area di progetto ed un suo intorno significativo, riportato nella tabella che segue:

<u>Tab. 12</u>

Cava "La Madonna"	$J_{\rm v}$
complesso estrattivo	0.91
cielo aperto	0.85
galleria	0.71

β: coefficiente di forma del blocco, espresso dalla relazione di Palmström (11) generato dai giunti appartenenti ai 3 ordini di discontinuità

$$\beta = \frac{[S2/S1 + (S2/S1 \times S3/S1) + S3/S1]^3}{(S2/S1 \times S3/S1)^2}$$
(11)

con:

S1; S2; S3: spaziatura media degli ordini di giunti che determinano il blocco

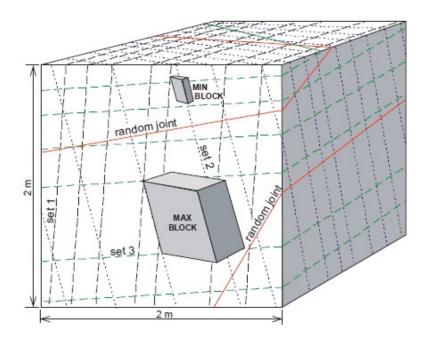


Fig. 5 : illustrazione della spaziatura S fra discontinuità adiacenti e del blocco unitario da esse definito (da Palmström, 2001)

sostituendo nella (11) è stato determinato il valore di β illustrato nella tabella che segue:

<u>Tab. 13</u>

Cava "La Madonna"	β
complesso estrattivo	37.83
cielo aperto	46.78
galleria	30.26

Sostituendo nella (9) si ottiene il valore di V_b riportato nella tabella che segue:

Tab. 14

Cava "La Madonna"	V_b
	(mc)
complesso estrattivo	50.24
cielo aperto	75.03
galleria	83.64

3.2) **DETERMINAZIONE DI RMi**

Sostituendo nella (5) è stato determinato il valore di JP, riportato nella tabella che segue:

Tab. 15

Cava "La Madonna"	JP
complesso estrattivo	0.81
cielo aperto	0.95
galleria	0.99

e, sostituendo nella (6), il valore di RMi per l'ammasso roccioso che caratterizza l'area esaminata, riportato in tabella 16

Tab. 16

Cava "La Madonna"	RMi
complesso estrattivo	55.37
cielo aperto	64.67
galleria	67.44

3.3) IL GEOLOGICAL STRESS INDEX (GSI) E LE SUE APPLICAZIONI

Il G.S.I., introdotto da Hoek (1995) e Hoek, Kaiser e Bawden (1995) permette di stimare la riduzione della resistenza degli ammassi rocciosi in differenti situazioni geologiche.

Esso è stato determinato mediante la metodica di Palmström.

Il G.S.I. può essere determinato, come proposto da Hoek (1999), mediante la tabella illustrata in figura 6:

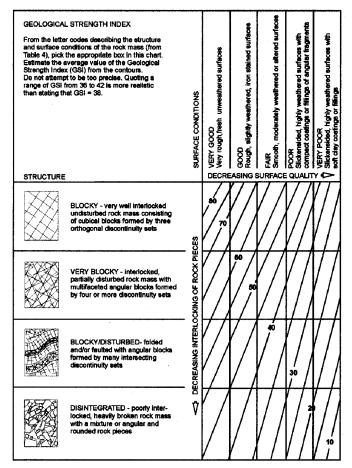


Fig. 6: tabella per la determinazione di GSI (Hoek, 1999)

in seguito, Hoek ha progressivamente modificato l'impostazione originaria a favore di una determinazione diretta di GSI proponendo una metodica di determinazione più quantitativa, basata su parametri misurabili in situ.

La tabella di figura 6 è stata modificata da Cai, Kaiser et alii (2004), i quali hanno proposto la seguente tabella riportata in figura 7 nella quale si evidenzia che il GSI dipende dal fattore J_c di Palmström (pari a 0.8) e dal volume del blocco unitario V_b determinato al paragrafo 3.1.1 e riportato in tabella 14

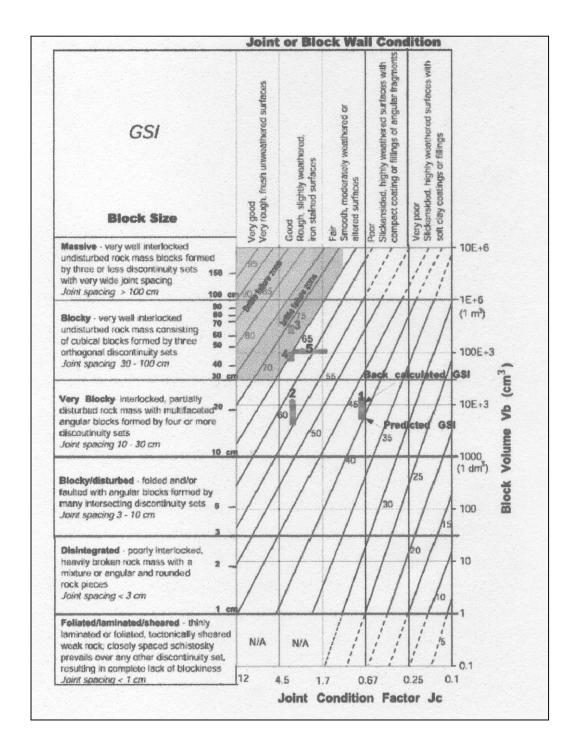


Figura 7: tabella per la determinazione di GSI (Hoek, 1999) modificata da Cai, Kaiser et alii (2004)

Osservando la figura 7 si evince che il valore di GSI è stimabile sia per i cantieri a cielo aperto ed in sotterraneo e per l'intero ammasso roccioso esaminato area in 75, pertanto l'ammasso roccioso che costituisce l'area di progetto ed un suo intorno significativo è definito "Massive".

3.3) IL SISTEMA CLASSIFICATIVO DI BIENIAWSKI (1989) PER LA CARATTERIZZAZIONE GENERALE DELL'AMMASSO ROCCIOSO

3.3.1) Generalità

Il rilevamento strutturale di dettaglio ha permesso, mediante il sistema classificativo di Bieniawski (metodo RMR), la classificazione dell'ammasso roccioso dal punto di vista geomeccanico, quantificando i parametri di resistenza globale quali coesione ed angolo di attrito.

La classificazione di Bieniawski è basata sul rilievo di 6 parametri:

R1: resistenza a compressione uniassiale

R2: indice RQD

R3: spaziatura dei giunti

R4: condizioni dei giunti

R5: condizioni idrauliche

R6: orientazione dei giunti

ciascun parametro viene valutato in modo quantitativo assegnando un indice parziale; la somma algebrica degli indici parziali determina l'indice complessivo dell'ammasso roccioso.

La classificazione fornisce due valori di RMR (Rock Mass Rating):

-
$$RMR_{base} = BMR = R1 + R2 + R3 + R4 + R5$$

-
$$RMR_{corretto} = RMR = BMR + R6$$

l'indice BMR permette di determinare i parametri di resistenza e deformabilità dell'ammasso roccioso mentre l'indice RMR si applica in sotterraneo e permette di determinarne la "classe di qualità".

Nei paragrafi che seguono è illustrata la determinazione dell'indice RMR e dei parametri geomeccanici dell'ammasso roccioso esaminato.

3.3.2) <u>Determinazione dell'indice RMR e dei parametri geomeccanici dell'ammasso roccioso esaminato</u>

3.3.2.1) Determinazione di BMR

I parametri sono stati determinati mediante l'elaborazione dei risultati del rilevamento strutturale e sono così definiti:

R1: resistenza a compressione uniassiale, cautelativamente, quale valore relativo alla roccia intatta è stato assegnato quello relativo alla resistenza a compressione uniassiale della massa marmorea non fratturata, pari a 693.54 Kg/cmq (68.01 Mpa, par. 3.3.5).

Per la determinazione di R1 è stata utilizzata la seguente tabella, basata sulla trasformazione dei grafici di Bieniawski in relazioni matematiche:

VALORE DI S _u (MPa)	EQUAZIONE
<= 44,5	$A1 = \frac{4}{44.5} S_u + 1$
44,5 ÷ 93,75	$A1 = \frac{4}{49,25} S_u + 1,368$
93,75 ÷ 140	$A1 = \frac{3}{46,25} S_u + 2,919$
140 ÷ 180	$A1 = 0.0375S_u + 6.75$
180 ÷ 240	$A1 = 0.025S_u + 9$
> 240	A1 = 15

la quale ha permesso di determinare un valore di R1 (A1 in tabella) per tutte le aree esaminate pari a 6.89.

R2: l'indice RQD (Rock Quality Designation) è definito come "recupero percentuale di carotaggio" e viene determinato analizzando il materiale risultante dai sondaggi geognostici; come per la

problematica in questione, in caso non sia disponibili materiale di carotaggio, l'indice RQD può essere determinato utilizzando la seguente relazione:

$$RQD = 115 - 3.3 \text{ x J}_{v} \tag{12}$$

dove:

J_v: numero dei giunti per mc, riportato in tabella 12; sostituendo nella (12), si è ottenuto un valore di RQD sempre superiore al 100%.

Per la determinazione di R2 è stata utilizzata la seguente tabella, basata sulla trasformazione dei grafici di Bieniawski in relazioni matematiche:

VALORE DI RQD %	EQUAZIONE
<= 26,5	$A2 = \frac{3}{26,6} RQD + 3$
26,5 ÷ 39	$A2 = \frac{2}{12,4} RQD + 1,71$
39 ÷ 76,6	$A2 = \frac{7}{37.6} RQD + 0.739$
> 76,6	$A2 = \frac{5}{23,4} RQD - 1,367$

la quale ha permesso di determinare un valore di R2 (A2 in tabella) per tutte le aree esaminate pari a 20.00.

R3: spaziatura ponderata dei giunti (par. 2.1.3.1).

Per la determinazione di R3 è stata utilizzata la seguente tabella, basata sulla trasformazione dei grafici di Bieniawski in relazioni matematiche:

SPAZIATURA (m)	EQUAZIONE
<= 0,2	A3 = 15 s + 5
$0,2 \div 0,4$	A3 = 10 s + 6
$0,4 \div 0,66$	A3 = 7,752 s + 5,9
0,66 ÷ 0,94	A3 = 7,067 s + 7,35
0,94 ÷ 1,6	A3 = 6,07 s + 8,288
1,6 ÷ 2,0	A3 = 5 s + 10
> 2,0	A3 = 20

la quale ha permesso di determinare un valore di R3 (A3 in tabella) per tutte le aree esaminate pari a 20.00.

R4: condizioni dei giunti; il valore di R4 è la somma di 5 parametri numerici riferiti a:

persistenza dei giunti : V1 apertura dei giunti : V2

rugosità dei giunti : V3

alterazione delle pareti dei giunti : V4

materiale di riempimento : V5

Per la determinazione dei parametri V, e successivamente di R4, sono state utilizzate le seguenti tabelle, basate sulla trasformazione dei grafici di Bieniawski in relazioni matematiche:

<1 6 1÷3 4 3÷10 2 10÷20 1 >20 0 APERTURA (mm) V2 Completamente chiuso 6 <0,1 5 0,1÷1 4 1÷5 1 >5 0 RUGOSITA' V3 Molto Rugosa 6 Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1 Decomposte 0	PERSISTENZA (m)	V1
3 ÷ 10 2 10 ÷ 20 1 > 20 0 APERTURA (mm) V2 Completamente chiuso 6 < 0,1	< 1	6
10 ÷ 20	1 ÷ 3	4
> 20 0	3 ÷ 10	2
APERTURA (mm) V2	10 ÷ 20	1
Completamente chiuso 6 < 0,1	> 20	0
< 0,1	APERTURA (mm)	V2
< 0,1	Completamente chiuso	6
1 ÷ 5 1 > 5 0 RUGOSITA' V3 Molto Rugosa 6 Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1		5
> 5 0 RUGOSITA' V3 Molto Rugosa 6 Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	0,1 ÷ 1	4
RUGOSITA' V3 Molto Rugosa 6 Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	1 ÷ 5	1
Molto Rugosa 6 Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	> 5	0
Rugosa 5 Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	RUGOSITA'	V3
Leggermente rugosa 3 Liscia 1 Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	Molto Rugosa	6
Liscia 1	Rugosa	5
Levigata 0 ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1		3
ALTERAZIONE V4 Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1		1
Non alterate 6 Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	Levigata	0
Leggermente alterate 5 Mediamente alterate 3 Molto alterate 1	ALTERAZIONE	V4
Mediamente alterate 3 Molto alterate 1	Non alterate	6
Molto alterate 1	Leggermente alterate	5
	Mediamente alterate	3
Decomposte 0	Molto alterate	1
	Decomposte	0

RIEMPIMENTO (mm)	RIEMPIMENTO	V5
	Assente	6
< 5	Compatto	4
> 5	Compatto	2
< 5	Soffice	2
> 5	Soffice	0

le quali hanno permesso di determinare un valore di R4 riportato nella tabella che segue:

Tab. 17

Cava "La Madonna"	Parametro R4
complesso estrattivo	14
cielo aperto	14
galleria	15

R5: condizioni idrauliche; per la determinazione di R5 è stata utilizzata la seguente tabella, basata sulla trasformazione dei grafici di Bieniawski in relazioni matematiche:

Venute d'acqua su	Nessuna	< 10	10-25	25-125 l/min	> 125
10 m di lunghezza		1/min	1/min		1/min
Condizione	Asciutta	Umida	Bagnata	Deboli venute	Forti venute
Coefficiente A5	15	10	7	4	0

la quale ha permesso di determinare un valore di R5 (A5 in tabella) per tutte le aree esaminate pari a 10.00.

Le tabelle 18, 19 e 20 riassumono i valori dei parametri sopra determinati e mostra il valore di RMR_b (BMR) relativo all'ammasso roccioso esaminato.

<u>Tab. 18</u>

	Parametri	Complesso estrattivo	
		Valori	Indice
R1	Resistenza della	693.54	6.89
	roccia intatta	Kg/cmq	
R2	Indice RQD	100 %	20.00
R3	Spaziatura dei giunti	> 2.00 m	20.00
R4	Condizioni dei giunti	superfici leggermente	14.00
		rugose;	
		apertura media 5.1 mm	
R5	Condizioni idrauliche	umida	10.00
	Indice BMR = Σ R	70.89	

<u>Tab. 19</u>

	Parametri	Cantiere a cielo aperto	
		Valori	Indice
R1	Resistenza della	693.54	6.89
	roccia intatta	Kg/cmq	
R2	Indice RQD	100 %	20.00
R3	Spaziatura dei giunti	> 2.00 m	20.00
R4	Condizioni dei giunti	superfici leggermente	14.00
	_	rugose;	
		apertura media 5.1 mm	
R5	Condizioni idrauliche	umida	10.00
	Indice BMR = Σ R	70.89	

trattandosi di analisi a cielo aperto in valore di BMR determinato corrisponde a quello di RMR ed inserisce l'ammasso roccioso esaminato in classe II di Bieniawski che lo definisce di qualità "buona".

Tab. 20

	Parametri	Parametri Cantiere in galleria	
		Valori	Indice
R1	Resistenza della	693.54	6.89
	roccia intatta	Kg/cmq	
R2	Indice RQD	100 %	20.00
R3	Spaziatura dei giunti	> 2.00 m	20.00
R4	Condizioni dei giunti	superfici leggermente	15.00
		rugose;	
		apertura media 5.1 mm	
R5	Condizioni idrauliche	umida	10.00
	Indice BMR = Σ R	71.89	

trattandosi di analisi in sotterraneo per la determinazione di RMR si applica a BMR un coefficiente di correzione A6, dipendente dall'orientamento delle discontinuità.

Tab. 21

APPLICAZIONE	Molto favorevole	Favorevole	Mediocre	Sfavorevole	Molto sfavorevole
Gallerie	0	- 2	- 5	- 10	- 12
Fondazioni	0	- 2	- 7	- 15	- 25

osservando la giacitura dei vari sistemi di discontinuità in rapporto alla direzione di avanzamento, la condizione è "mediocre" e pertanto il coefficiente A6 è pari a - 5.

Il valore di RMR risulta pertanto pari a 65.89 che inserisce l'ammasso roccioso esaminato in classe III di Bieniawski che lo definisce di qualità "discreta".

3.3.2.2) Parametri geomeccanici dell'ammasso roccioso, modulo di deformabilità e coefficienti m ed s

I parametri geomeccanici dell'ammasso roccioso determinati sono la coesione (C), l'angolo di attrito (φ) ed il modulo di deformabilità (E).

Essi sono stati determinati mediante le relazioni (BIENIAWSKI, 1989):

$$C = 5 \times BMR \tag{13}$$

e

$$\phi = 5 + BMR/2 \tag{14}$$

sostituendo nella (13) e nella (14) si ottengono i valori di C e φ, riportati nella tabella che segue:

Tab. 22

Cava "La Madonna"	Angolo di attrito	Coesione
	(°)	(Kg/cmq)
complesso estrattivo	40.44	3.54
cielo aperto	40.44	3.54
galleria	40.94	3.59

Il valore del modulo di deformabilità E si ottiene dalla formula valida per RMRc > 50:

$$E = 2 \times BMR - 100$$
 (15)

è riportato nella tabella che segue:

Tab. 23

Cava "La Madonna"	Modulo di
	deformabilità
	Е
	(GPa)
complesso estrattivo	41.78
cielo aperto	41.78
galleria	43.78

Utilizzando l'indice BMR sono stati determinati i valori dei coefficienti adimensionali m e s, così definiti: ammasso indisturbato :

$$m_p = m_i e^{(BMR-100)/28}$$
 (16)

$$s_p = e^{(BMR-100)/9}$$
 (17)

ammasso disturbato:

$$m_r = m_i e^{(BMR-100)/14}$$
 (18)

$$s_r = e^{(BMR-100)/6}$$
 (19)

dove:

m_i: coefficiente adimensionale, che dipende dalle caratteristiche mineralogico – petrografiche della roccia e si determina mediante prove triassiali, considerato pari a 7 (Hoek, 1990)

BMR : indice di base di Bieniawski (tabella 8)

Sostituendo, si ottiene:

Tab. 24

Complesso estrattivo				
Ammasso roccioso esaminato	Coefficienti Adimensionali			
indisturbato	m _p	Sp		
	2.48	3.93 x 10 ⁻²		
disturbato	$m_{\rm r}$	Sr		
	0.88	7.81×10^{-3}		

Tab. 25

Cantiere a cielo aperto									
Ammasso roccioso Coefficienti esaminato Adimensionali									
indisturbato	m _p	S_p							
	2.48	3.93 x 10 ⁻²							
disturbato	$m_{\rm r}$	S_{r}							
	0.88	7.81 x 10 ⁻³							

Tab. 26

Cantiere in sotterraneo									
Ammasso roccioso Coefficienti esaminato Adimensionali									
indisturbato	m _p	Sp							
	2.57	4.40 x 10 ⁻²							
disturbato	$m_{\rm r}$	S_r							
	0.94	9.23 x 10 ⁻³							

il significato meccanico dei termini disturbato ed indisturbato è stato recentemente messo in discussione (Ribacchi, 1997) esaminando il comportamento di provini calcarei a diverso grado di fratturazione sottoposti a prove di compressione triassiale; è risultato che, mentre il valore della resistenza di picco ottenuta in laboratorio si accorda con quella ottenuta utilizzando le relazioni di Hoek-Brown per un ammasso roccioso definito indisturbato, i parametri di resistenza di laboratorio in condizioni residue non corrispondono con quelli di Hoek-Brown per un ammasso disturbato.

Carrara, li 08/08/2025

Il Geologo

ALLEGATO A: Stendimenti

STENDIMENTI A CIELO APERTO CAVA N. 64 "LA MADONNA"

Stendimento n. St.1	1	Orientazione : N 65		Orientazione : N 65 Verso : WSW – ENE				Lunghez		
Discontinuità	Orientazione		Distanza dall'ori Orientazione dello stendime			Scabrezza		Apertura massima	Resistenza a compressione	Persistenza
	im	nm	incl		(m)	JRC Classi di Barton	Profilo tipico	(mm)	JCS ^(a) Kg/cmq	
1	2	30	45		0.00 m da terra)	6 – 8		1.0	411.20	х
2	2	35	47		0.00 m da terra)	6 – 8		chiusa		х
3	2:	23	55	Ì	3.40	4 – 6		20.0	392.12	Х
4	2	05	52		5.50	4 – 6		2.0		Х
5	0	52	57		6.60	4 – 6		chiusa		d
6	0	55	52		7.90	8 – 10		1.0		d
7	0	48	48		9.50	18 – 20		5.0		d
8	2	12	58		10.00	4 – 6		50.0	573.48	Х

Stendimento n. St.2	2 Orier	Orientazione : N 120		Verso : ESE – WNW		Lunghe	Lunghezza : 7.0 m		
Discontinuità	Discontinuità Orientazione			Distanza dall'origine dello stendimento		Scabrezza		Resistenza a	Persistenza
Discontinuita	Offerit	Orientazione dello		namento	JRC	Profilo	massima	compressione JCS ^(a)	Fersisteriza
	imm	incl		(m)		tipico	(mm)	Kg/cmq	
1	235	47		0.60	10 – 12		chiusa		Х
2	230	45		1.50	10 – 12		1.0		х
3	212	38		3.60	10 – 12		chiusa		Х
4	215	42		4.00			1.0	340.02	Х
5	232	35	6.00		10 – 12		chiusa	392.12	Х
6	212	55		7.00	4 – 6		10.0	534.03	Х

Stendimento n. St.3			N 114 Verso : NNW – SSE		/ – SSE	Lunghezza : 19.0 m			
Discontinuità	Orienta	Orientazione		Distanza dall'origine dello stendimento		Scabrezza		Resistenza a compressione	Persistenza
	imm	incl		(m)	JRC Classi di Barton	Profilo tipico	(mm)	JCS ^(a) Kg/cmq	
1	208	53		0.00	8 – 10		20.0	515.33	Х
2	194	67		5.30	14 – 16		3.0	316.63	r
3	210	63		9.30	4 – 6		1.0	474.21	Х
4	110	28		12.60	10 – 12		5.0	340.02	d
5	178	83		13.00	4 – 6		1.0		Х
6	161	82		13.70	8 – 10		2.0	509.25	Х
7	220	42		14.50			2.0	281.16	rx
8	222	40		16.00	4 – 6		chiusa		Х
9	217	41		17.00	4 – 6		chiusa	•	Х

Stendimento n. St.4			N 67 Verso : WSW – ENE		Lunghe	Lunghezza : 10.6 m.			
Discontinuità	Discontinuità Orientazione		1	Distanza dall'origine dello stendimento		Scabrezza		Resistenza a compressione	Persistenza
Biocontinuta			dono otoriali ilonto		Classi di	Profilo	massima	JCS ^(a)	1 Grototoriza
	imm	incl		(m)	Barton	tipico	(mm)	Kg/cmq	
1	220	55	(0.00	4 – 6		2.0	401.55	х
		(a 0.3		m da terra)					
2	345	15		0.00	4 – 6		1.0		х
			(a 0.8 r	n da terra)					
3	038	68	3	3.00	6 – 8		chiusa	514.03	d
4	237	45		3.65	4 – 6		chiusa		d
5	357	29	(6.40	4 – 6		chiusa		d
6	225	25 43		7.20	4 – 6		3.0		Х
7	053	053 31		0.50	4 – 6		chiusa		d
8	238	49	1	0.60	8 – 10		3.0	514.03	Х

Stendimento n. St.5	5 Orier	Orientazione : N 64		Verso : WNW – ESE		Lunghe	Lunghezza : 7.6 m		
Discontinuità Orientazione		azione	Distanza dall'origine dello stendimento		Scabrezza		Apertura massima	Resistenza a compressione	Persistenza
Discontinuita	imm	incl	dello ste	(m)	JRC Classi di Barton	Profilo tipico	(mm)	JCS ^(a) Kg/cmq	1 GISISTEFIZA
1	238	49		0.00			3.0		Х
2	058	43		1.20	4 – 6		2.0	348.20	d
3	220	55		presa tra) e 1.70 *	8 – 10		20.0	515.33	х
4	217	49		2.50	4 – 6		1.0		Х
5	218	48		2.60			chiusa		r
6	225	50		5.70			chiusa		rx
7	223	51		5.80	4 – 6		chiusa		rx

^{*} strato fillosilicatico

Stendimento n. St.6	6 Or	Orientazione : N 46		Verso : SW -	Verso : SW – NE Lunghe				
Discontinuità	Orientazione		Distanza dall' Orientazione dello stendim				Apertura massima	Resistenza a compressione	Persistenza
					JRC	Profilo		JCS (a)	
	imm	ı incl		(m)	Classi di Barton	tipico	(mm)	Kg/cmq	
1	235	51		0.00	8 – 10		30.0	411.20	Х
2	232	43		0.20	4 – 6		chiusa		х
3	224	45		1.90	6 – 8		2.0	521.49	Х
4	228	48		3.80	4 – 6		chiusa		х
5	226	49		4.30	4 – 6		chiusa		х
6	229	50		5.90	4 – 6		chiusa		х
7	232	53		7.80	4 – 6		2.0		Х
8	230	50		10.10	4 – 6		chiusa		Х
9	228	50		11.00	8 – 10		10.0	515.33	Х

Stendimento n. St.7	7 Orientazione : I		N 103 Vers	so : WSW – E	NE	Lunghe	Lunghezza : 15.20 m		
Discontinuità	Orie	ntazione	Distanza dall'o	-	Scabrezza		Apertura massima	Resistenza a compressione	Persistenza
				JI	RC	Profilo		JCS (a)	
	imm	incl	(m)	Cla	ssi di	tipico	(mm)	Kg/cmq	
				Ba	rton				
1	132	49	1.10	4	-6		2.0	348.20	X
2	310	41	1.70	4	-6		5.0	411.30	X
3	312	43	3.10	8 -	- 10		1.0		d
4	225	48	4.70	8 -	- 10		1.0		Х
5	210	54	6.90	8 -	- 10		3.0		Х
6			area di finimento da 6.90 a 9.20					261.80	Х
7	232	51	9.20	8 -	- 10		100.0	479.88	Х
8	228	46	10.70	4	-6		chiusa		rx
9	291	26	12.10	8 -	- 10		1.0		Х
10	127	32	16.20	8 -	- 10		1.0		Х
11	218	43	12.00	18	- 20		100.0	401.55	Х
12	226	45	12.75	18	- 20		10.0	•	Х
13	223	52	14.30	6	-8		chiusa		Х
14	221 54		15.30	10	- 12		20.0		Х
15	040 42		15.80	10	– 12		3.0		d
			(a 0.3 m da	terra)					

Stendimento n. St.8	8	Orier	ntazione :	N 60	Verso : WSW	/ – ENE	Lungh	nezza : 15.80 i	m	
					dall'origine	Scabi	rezza	Apertura	Resistenza a	
Discontinuità	0	rient	azione	dello ste	ndimento	JRC Profilo		massima	compressione	Persistenza
			Sec. of		()	Classi di	tipico	(JCS ^(a)	
	l in	ım	incl		(m)	Barton		(mm)	Kg/cmq	
1	2	38	58		0.00	4 – 6		2.0		Х
2	2	27	50		1.40	4 – 6		2.0		х
3	2	36	60		3.40	4 – 6		chiusa		r
4	2	41	46		presa tra	18 – 20		20.0		х
				5.10) e 6.30 *					
5	2	33	42		6.90	8 – 10		3.0		Х
6	2	48	51		8.80	4 – 6		chiusa		d
7	2	34	43		11.30	4 – 6		chiusa		х
8	2	35	45		11.60	4 – 6		chiusa		Х
9	2	30	40		11.70	4 – 6		chiusa		rx
10	2	18	43		12.00	18 – 20		100.0	401.55	Х
11	2	26	45		12.75			10.0		Х
12	2	23	52	14.30		6-8		chiusa		Х
13	2	21	54	15.30		10 – 12		20.0		Х
14	0	40	42	15.80		10 – 12		3.0		d
				(a 0.3	m da terra)					

^{*} strato fillosilicatico

Stendimento n. St.9	Stendimento n. 9 Orientazione : St.9		N 131 Verso : WNW – ES		V – ESE	- ESE Lunghezza : 29.50 m		n	
			Distanza	dall'origine	Scab	Scabrezza		Resistenza a	
Discontinuità	Orientazione		dello ste	ndimento	JRC	Profilo	massima	compressione	Persistenza
	imm	incl		(m)	Classi di	tipico	(mm)	JCS ^(a) Kg/cmq	
				` '	Barton		` ′	<u> </u>	
1	250			presa tra	18 – 20		300.0	441.58 max	Х
	256	41	0.00	e 13.30 *				221.70 min	X
2	233	44		9.80	8 – 10		2.0	< 100.0	r
3	075	32		13.00	4 – 6		1.0	316.63	d
4			area di	finimento da 1	3.00 a 20.0	00		Х	
5	175	88		14.20	4 – 6		1.0	497.29	Х
6	182	85		14.90	4 – 6		chiusa	369.51	Х
7	012	82		16.80	4 – 6		5.0	573.48	Х
8	078	34		20.00	4 – 6		1.0	463.08	Х
9	026	85		22.10	8 – 10		3.0		х
10	358	85		23.10	4 – 6		1.0		Х
11	246	42		23.20	8 – 10		1.0	340.02	Х
12		•	area di	finimento da 2	23.20 a 29.5	50	·	< 100.0	Х
13	020	86		23.60	4 – 6		1.0		Х
14	070	48	25.40		4 – 6		1.0		Х
15	230	43		29.50	8 – 10		3.0	316.63	Х

^{*} strato fillosilicatico

Stendimento n. St.10			N 36	Verso : ENE – WSW		Lungh	Lunghezza : 61.50 m		
Discontinuità	Orienta imm	azione incl		dall'origine ndimento (m)	JRC Classi di Barton	Profilo tipico	Apertura massima (mm)	Resistenza a compressione JCS ^(a) Kg/cmq	Persistenza
1	197	48	(0.00 *	8 – 10		20.0	316.63	X
2	183	46		2.90	6 – 8		50.0	281.16	х
3	206	43		7.00	4 – 6		10.0		X
4	030	31		8.80	6 – 8		chiusa		r
5	210	47	•	10.20	6 – 8		5.0		Х
6	031	31	•	11.30	6 – 8		chiusa		r
7	216	51	,	14.50	6 – 8		1.0		Х
8	214	49	,	15.60	14 – 16		20.0		Х
9	211	45	•	18.30	6 – 8		30.0		Х
10	208	46	2	20.30	8 – 10		10.0		Х
11	206	45		26.50	6 – 8		50.0		Х
12	210	49		30.60	6 – 8		1.0		Х
13	313	82		35.80	4 – 6		chiusa	441.58	rx
14	205	56		36.70	18 – 20		5.0		Х
15	212	53		38.90	10 – 12		50.0		Х
16	215	48		42.00	18 – 20		5.0		Х
17	290	76		44.80	4 – 6 6 – 8		1.0		rx
18	208	50		46.00			1.0		х
19	215	55		48.60			chiusa		rx
20	027	44		61.10			chiusa		rx
21	208	47	6	1.10 *	18 – 20		50.0	479.88 max < 100.0 min	Х

^{*} strato fillosilicatico

Stendimento n. St.11	11 (Orien	tazione :	N 40	Verso : WSV	V – ENE	Lunghe	ezza : 37.00 ı	n	
Discontinuità	Or		azione incl		dall'origine ndimento (m)	JRC Classi di Barton	Profilo tipico	Apertura massima (mm)	Resistenza a compressione JCS ^(a) Kg/cmq	Persistenza
1	22	22	45		0.0	6-8		esposta	369.51	Х
2	22	20	46		3.2	6 – 8		2.0		Х
3	22	20	45		4.4	6 – 8		chiusa		Х
4	2	18	44		6.2	6 – 8		chiusa		х
5	22	24	42		7.5	6 – 8		chiusa		Х
6	22	23	49		9.1	6 – 8		2.0	316.83	Х
7	<mark>29</mark>	93	78		9.1	6 – 8		esposta	463.08	Х
8	21	15	61		13.7	6 – 8		300.0	261.80	Х
9	21	17	63		18.0	6 – 8		10.0		Х
10	21	15	65		23.3	6 – 8		chiusa		Х
11	30)3	38		27.4	6-8		chiusa		rd
12	22	20	52		32.7	6-8		chiusa		Х
13	03	32	30		36.0	6 – 8		chiusa		r
14	03	33	31		37.0	6 – 8		chiusa		r

Stendimento n. St.12	12 Orier	tazione :	N 162	Verso : SSE	– NNW	Lunghe	ezza : 17.30 r	n	
Discontinuità	Orienta	azione		a dall'origine endimento	Scabi	rezza	Apertura massima	Resistenza a compressione	Persistenza
Biocontinuta	Onone	2210110			JRC	Profilo	massima	JCS ^(a)	TOTOTOTIZA
	imm	221 45		(m)	Classi di Barton	tipico	(mm)	Kg/cmq	
1	221	45		0.0	6 – 8		10.0	340.02	х
2	121	53		0.0	6 – 8		esposta	509.25	d
3	217	57		2.8	6 – 8		10.0		Х
4	303	77		5.1	8 – 10		10.0		Х
5	223	50		6.0	6 – 8		esposta	281.16	Х
6	307	79		6.5	6 – 8		chiusa		х
7	305	81		6.7	6 – 8		5.0		х
8	307	83		7.3	6 – 8		chiusa		х
9	314	84		7.9	6 – 8		10.0		х
10	317	87		9.8	6 – 8		esposta		х
11	313	78		12.3	8 – 10		chiusa		х
12	318	87		15.3	8 – 10		chiusa		х
13	317	85		15.6	6 – 8		chiusa		х
14	315	84		16.8	6 – 8		chiusa		r

Stendimento n. St.13	13	Orien	Orientazione : N 42		42 Verso : SSW – NNE		Lungh	Lunghezza : 17.10 m		
Discontinuità	(dall'origine ndimento	Scabi JRC	rezza Profilo	Apertura massima	Resistenza a compressione	Persistenza
	i	mm	incl		(m)	Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1		226	61		0.0	6 – 8		esposta	261.80	Х
2		295	45		0.5	6 – 8		5.0	401.55	d
3		307	75		2.4	6 – 8		2.0		d
4		304	77		4.2	6 – 8		1.0		d
5		218	63		9.0	6 – 8		2.0		Х
6		220	63		13.6	6 – 8		1.0		Х
7		225	61		17.1	6 – 8		esposta		Х

Stendimento n.1	4 Orie	ntazione :		Verso : WNV	V – ESE	Lunghe	ezza : 52.00 ı	m	7
St.14			lel "verso"						
	lmı	m N 252;							
				dall'origine	Scabi	rezza	Apertura	Resistenza a	
Discontinuità	Orient	Orientazione dell		dello stendimento		Profilo	massima	compressione	Persistenza
					Classi di	tipico	, ,	JCS ^(a)	
	imm	incl		(m)	Barton		(mm)	Kg/cmq	
1	098	50		1.40	4 – 6		chiusa		rx
2	096	51		2.50	4 – 6		chiusa		r
3	210	38		7.60	4 – 6		chiusa		r
4	118	42		7.60	4 – 6		2.0		r
5	004	74		13.30	4 – 6		1.0		Х
6	121	38		13.60	4 – 6		3.0		r
7	310	66		14.30	10 – 12		chiusa		d
8	089	40	,	15.25	4 – 6		2.0		r
9	106	22	1	17.40	4 – 6		chiusa		r
10	084	46		23.25	4 – 6		chiusa		rx
11	220	89		23.80	4 – 6		chiusa		rx
12	351	89		24.20	4 – 6		chiusa		rx
13	353	78		29.00	4 – 6		chiusa		rx
14	312	48	;	37.15	4 – 6		chiusa		rx
15	312	72	;	39.35	4 – 6		chiusa		r
16	340	89		41.35	4 – 6		10.0		Х
17	327	72		46.45	4 – 6		chiusa		r
18	315	75		48.80	4 – 6		chiusa		d
19	292	32		51.70	4 – 6		chiusa		r

Stendimento n.	15 Orier	ntazione :	N 45	Verso : NE -	SW	Lunghe	ezza : 52.50	m]
St.15	<u> </u>		Distanza	dall'origine	Scab	rezza	Apertura	Resistenza a	
Discontinuità	Orienta	azione		ndimento	JRC	Profilo	massima	compressione	Persistenza
	imm	incl		(m)	Classi di	tipico	(mm)	JCS ^(a) Kg/cmq	
1	221	57		0.0	Barton 8 – 10	V	esposta	365.14	Х
2	217	61		1.0	6 – 8	V	chiusa		X
3	223	53		2.6	6-8	V	chiusa		Х
5	040 214	09 55	2.6 a 0.	7 m da terra 3.2	6 – 8 6 – 8	V	chiusa chiusa		r
6	217	56		3.7	8 – 10	V	1.0		rx x
7	215	57		5.6	8 – 10	V	1.0		X
8	218	57		5.9	8 – 10	V	1.0		Х
9	226 214	23 56		6.5 6.7	6 – 8 8 – 10	V	chiusa 1.0		rx x
11	214	62		6.9	8 – 10	V	esposta	382.91	X
12	211	14	6.9 a 1.	9 m da terra	6 – 8	V	chiusa		rd
13	219	59		8.0	6 – 8	V	1.0		Х
14 15	223 220	57 12	0023	9.0 5 m da terra	8 – 10 6 – 8	V	1.0 chiusa		x rx
16	225	55	3.0 a 3.	9.9	8 – 10	V	1.0		X
17	042	05	10.3 a 4	.0 m da terra	6 – 8	V	chiusa		rx
18	219	54		10.4	8 – 10	V	chiusa		Х
19	225 227	52 54		11.4 13.1	6 – 8 6 – 8	V	3.0 chiusa		X
21	215	56		13.9	6-8	V	1.0		X
22	225	58		14.2	6-8	V	1.0		X
23	295	7 9		.0 m da terra	10 – 12	VIII	esposta		Х
24 25	226 218	56 52		14.8	8 – 10 8 – 10	V	1.0	373.92	X
26	224	54		15.3 15.5	8 – 10	V	esposta 1.0	373.92	X
27	220	50		16.3	8 – 10	V	1.0		X
28	020	12		3.7 da terra	6 – 8	V	chiusa		rx
29	215	51		16.9	8 – 10	V	1.0	F24.02	X
30	305 223	72 52		.8 m da terra 17.4	10 – 12 6 – 8	VIII	esposta 1.0	534.03	X
32	045	79		17.5	6-8	VIII	chiusa		X
33	297	80		17.6	10 – 12	VIII	esposta	560.02	rx
34 35	023 210	11 52		.0 m da terra 17.9	6 – 8 6 – 8	V	chiusa 1.0		rx
36	034	06		.5 m da terra	6-8	V	chiusa		x rx
37	040	72		18.4	6 – 8	VIII	chiusa		X
38	025	10		.5 m da terra	6-8	V	chiusa		rx
39 40	210 294	54 73		19.1 .5 m da terra	6 – 8 10 – 12	V	chiusa esposta		X
41	229	56		20.1	6-8	V	3.0		X
42	294	73		.5 m da terra	10 – 12	VIII	esposta		rx
43	210	57		20.5	6-8	V	chiusa		Х
44	212 210	57 59		20.9 21.7	6 – 8 8 – 10	V	chiusa esposta	356.57	X
46	027	20		.0 m da terra	6-8	V	chiusa	330.37	x rx
47	043	88		24.0	8 – 10	VIII	2.0		х
48	210	48		24.2	6 – 8	V	chiusa		Х
49 50	020 045	15 87		.5 m da terra 25.4	6 – 8 6 – 8	V	chiusa 1.0		r X
51	037	85		25.6	8 – 10	VIII	1.0		x
52	234	57		26.2	6 – 8	V	1.0		Х
53 54	218	52		26.3 26.5	6-8	V	chiusa		X
55	030 034	88 84		26.6	8 – 10 6 – 8	VIII	1.0 1.0		X
56	022	81		26.9	8 – 10	VIII	chiusa		X
57	122	52		.0 m da terra	6 – 8	VIII	chiusa		r
58 59	234	60		27.4 27.5	6 – 8 8 – 10	V	chiusa		X
60	208 226	89 63		28.2	8 – 10	VIII	chiusa 1.0		X X
61	325	89		28.3	6-8	VIII	1.0		X
62	224	63		28.5	8 – 10	V	1.0		Х
63	322 214	88 65		28.7	8 – 10	VIII V	1.0 2.0		X
65	214	65 62		28.9 30.8	6 – 8 8 – 10	V	chiusa		X
66	223	59		32.5	8 – 10	V	2.0		X
67				di finimento da				274.56	Х
68	217 225	51 52		41.4 42.1	8 – 10 8 – 10	V	2.0 1.0		X
70	225	53		42.1	8 – 10	V	chiusa		X

71	041	09	42.3 a 1.5 m da terra	6 – 8	V	chiusa	rx
72	223	52	43.0	8 – 10	V	chiusa	Х
73	030	08	44.1 a 4.0 m da terra	8 – 10	VIII	chiusa	rx
74	031	06	44.1 a 3.6 m da terra	8 – 10	VIII	chiusa	rx
75	219	50	44.5	8 – 10	V	1.0	Х
76	215	56	45.1	8 – 10	V	1.0	Х
77	219	56	45.6	8 – 10	V	chiusa	Х
78	221	57	46.3	8 – 10	V	chiusa	Х
79	225	59	48.4	6 – 8	V	chiusa	Х
80	222	57	48.6	6 – 8	V	chiusa	Х
81	220	56	49.1	6 – 8	V	1.0	Х

Stendimento n. St.16	16	Orier	ntazione :	N 115	Verso : NNW	– SSE	Lunghe	ezza : 18.00 i	n	
				1	dall'origine	Scabrezza		Apertura	Resistenza a	
Discontinuità	0	rient	azione	dello stendimento		JRC	Profilo	massima	compressione	Persistenza
	in	imm incl		(m)		Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1	0	20	54		0.0	6 – 8	VIII	chiusa		х
2	2	24	58		8.0	6 – 8	V	esposta	392.12	Х
3	0	34	57	8.0 a 3.	.5 m da terra	8 – 10	VIII	esposta		Х
4	0	25	60	8.0 a 2.	.0 m da terra	6 – 8	VIII	esposta		Х
5	2	10	88		8.0	6 – 8	VIII	1		dx
6				area d	di finimento da	8.0 a 10.6	*		287.92	Х
7	3	29	73		10.6	6 – 8	VIII	2		Х
8	2	16	62		11.5	6 – 8	V	esposta	348.20	Х
9	0	22	56		12.2	6 – 8	VIII	1		Х
10	0	027 57		12.4	8 – 10	VIII	2		Х	
11	2	19	57		18.0	6 – 8	V	1		Х
12	2	22	55	18.0 a 1	.0 m da terra	6 – 8	V	1		Х

^{*} strato fillosilicatico

Stendimento n. St.17	17	Orient	tazione :	N 27	Verso : NNE	- SSW	Lungh	ezza : 19.00 ı	m	
				l	dall'origine	Scab	rezza	Apertura	Resistenza a	
Discontinuità	0	Orientazione dello sten		ndimento	JRC	Profilo	massima	compressione	Persistenza	
			to al		()	Classi di	tipico	()	JCS ^(a)	
	In	nm	incl		(m)	Barton		(mm)	Kg/cmq	
1	2	22	55		0.0	6-8	V	1		Х
2	3	27	71		7.8	8 – 10	VIII	3		Х
3				area	di finimento da	17.8 a 19.0			294.85	
4	2	25	58		19.0	6 – 8	V	1		Х

Stendimento n. St.18	18 Orier	itazione :	N 75	Verso : ENE	– WSW	Lunghe	ezza : 11.00 r	n	
			Distanza	a dall'origine	Scabi	rezza	Apertura	Resistenza a	
Discontinuità	Orienta	azione	dello ste	ndimento	JRC	Profilo	massima	compressione	Persistenza
					Classi di	tipico		JCS ^(a)	
	imm	incl		(m)	Barton		(mm)	Kg/cmq	
1	<mark>205</mark>	12	0.0 a 3	.0 m da terra	6 – 8	V	chiusa		Х
2	307	79	2.0 a 4	.0 m da terra	6 – 8	VIII	esposta		r
3	045	62		2.3	6 – 8	VIII	chiusa		Х
4	215	65		3.8	6 – 8	V	chiusa		Х
5	043	57		4.1	6 – 8	VIII	chiusa		r
6	227	60		4.1	8 – 10	V	chiusa		Х
7	118	65		4.2	8 – 10	V	chiusa		Х
8	219	61		5.4	6 – 8	V	chiusa		Х
9	213	52		6.9	6 – 8	V	chiusa		Х
10	219	55		7.2	6 – 8	V	chiusa		Х
11	220	54		7.4	6 – 8	V	chiusa		Х
12	223	55		presa tra	6-8	V	chiusa	301.93	Х
			7.8	7.8 e 8.2 *					
13	223	50	10.8		6 – 8	V	chiusa		Х
14	122	70	10.9		8 – 10	V	chiusa	•	Х

^{*} strato fillosilicatico

Stendimento n. St.19	19	Orier	ntazione :	N 31	Verso : NNE	– SSW	Lungh	ezza : 22.20	m	
					dall'origine	Scab	rezza	Apertura	Resistenza a	
Discontinuità	0	rient	azione	dello stendimento		JRC	Profilo	massima	compressione	Persistenza
	in	nm	incl		(m)	Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1	2	03	51		3.8	6 – 8	V	esposta	373.92	Х
2	2	11	59		5.5	6 – 8	V	1		Х
3	2	80	84		5.5	6 – 8	VIII	1		rx
4	1	88	72		5.5	8 – 10	VIII	esposta		rd
5	0	33	78		5.8	6 – 8	VIII	chiusa		r
6	2	13	54		6.2	6 – 8	V	esposta		Х
7	2	10	51		10.4	6 – 8	V	1.0		Х
8	2	80	55		12.5	6 – 8	V	5.0		Х
9	2	10	47		14.8	6 – 8	V	2.0		Х
10	1	97	52		17.0	6 – 8	V	1.0		Х
11	2	05	56		18.0	6 – 8	V	esposta		Х
12	2	200 48			20.6	6 – 8	V	1.0		Х
13	2	03	52	22.2 a 0).2 m da terra	6 – 8	V	esposta		Х
14	2	05	53	22.2 a 2	2.2 m da terra	6 – 8	V	esposta		Х

STENDIMENTI IN GALLERIA CAVA N. 64 "LA MADONNA"

Stendimento n. St.20	20 C	rientazio	one :	N 114	Verso : WNW	/ – ESE	Lungh	ezza : 19.00	m	
				Distanza	dall'origine	Scab	rezza	Apertura	Resistenza a	
Discontinuità	Or	entazior	ne	dello ster	ndimento	JRC	Profilo	massima	compressione	Persistenza
	im	m in	cl		(m)	Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1	11	8 7	5		2.8	10 – 12	VIII	1.0		d
2	12	0 8	2		3.9	10 – 12	VIII	1.0		x (t)
3	12	1 8	0		4.0	10 – 12	VIII	chiusa		Х
4	16	5 7	2		4.9	6 – 8	VIII	chiusa		d
5	21		2		5.7	6 – 8	V	chiusa		Х
6	03	0 6	8		6.9	10 – 12	VIII	2.0		x (t)
7	03	3 7	0		8.0	6 – 8	VIII	1.0		r
8	15	<u> </u>	7		10.4	8 – 10	VIII	2.0		x (t)
9	16	8 7	2		12.3	8 – 10	VIII	chiusa		x (t)
10	21	2 5	4	12.5 a 1	.5 m da terra	8 – 10	V	1.0		x (t)
11	16	5 7	9		13.2	6 – 8	VIII	1.0		x (t)
12	10	0 7	0		15.1	6 – 8	VIII	chiusa		rx (t)
13	10	7 7	2		17.3	6 – 8	VIII	chiusa		rx (t)
14	32	9 3	0		18.0		VIII	chiusa		r
15	32	1 2	5		18.9	8 – 10	VIII	1.0	•	x (t)

(t) : presente anche a tetto (t) : presente anche a tetto * limiti strato fillosilicatico

Stendimento n. : St.21	21 Ori	entazione :	N 24	Verso : ENE	– WSW	Lunghe	ezza : 20.00 r	n	
Discontinuità	Orie:	ntazione incl		dall'origine ndimento (m)	JRC Classi di Barton	rezza Profilo tipico	Apertura massima (mm)	Resistenza a compressione JCS ^(a) Kg/cmq	Persistenza
1	221	64		0.5	8 – 10	V	2.0	<u>J. 1</u>	x (t)
2	218	55		1.0	8 – 10	V	60.0	373.92	x (t)
3	220	57		2.3	8 – 10	V	1.0		x (t)
4	332	89		5.1	6 – 8	VIII	chiusa		d
5	216	60		8.5	6 – 8	V	chiusa		x (t)
6	218	65		8.8 *	8 – 10	V	chiusa		x (t)
7	216	64		9.4 *	8 – 10	V	2.0		x (t)
8	212	60		13.6	6 – 8	V	chiusa		x(t)
9	210	210 58		15.1	6-8	V	chiusa		x(t)
10	215	62		19.6	8 – 10	V	1.0		x (t)

(t) : presente anche a tetto * limiti strato fillosilicatico

Stendimento n. St.22	Stendimento n. 22 Orientazione : St.22		N 24	24 Verso : ENE – WS\		- WSW Lunghezza : 13.00 m		n		
				Distanza dall'origine		Scabrezza		Apertura	Resistenza a	
Discontinuità	Ori	Orientazione		dello stendimento		JRC	Profilo	massima	compressione	Persistenza
	imr	m	incl		(m)	Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1	20)2	59		0.5	8 – 10	V	3.0		x (t)
2	20)5	63		5.6	8 – 10	V	1.0		x (t)
3	21	2	65		11.6	8 – 10	V	chiusa		x (t)
4	21	0	60		13.0	8 – 10	V	chiusa		x (t)

Stendimento n. 2 St.23	Stendimento n. 23 Orientazione : St.23		N 116 Verso : WNW		/ – ESE Lun		ezza : 8.00 m		
Discontinuità	0-1-		1	Distanza dall'origine		rezza	Apertura	Resistenza a	Di. t
Discontinuità	Orientazione		dello ste	dello stendimento		Profilo	massima	compressione JCS ^(a)	Persistenza
	imm	incl		(m)		tipico	(mm)	Kg/cmq	
1	195	41	0.0 a 2.	.0 m da terra	6 – 8	V	chiusa		rx
2	141	71	3.8		6 – 8	VIII	chiusa		x (t)
3	150	73		4.8	6 – 8	VIII	2.0	•	x (t)

Stendimento n. St.24	n. 24 Orientazione : N		N 25	25 Verso : SSW – NNE		Lungh	ezza : 6.10 m			
					dall'origine	Scabrezza		Apertura	Resistenza a	
Discontinuità		Orienta	Orientazione dello sten		ndimento	JRC	Profilo	massima	compressione	Persistenza
		imm	incl		(m)	Classi di Barton	tipico	(mm)	JCS ^(a) Kg/cmq	
1		205	58		1.5	6 – 8	V	2.0		x(t)
2				area	area di finimento da				261.80	
3		202	58		2.5		V	2.0		x(t)
4		208	55	6.1 a 4	.0 m da terra	6 – 8	V	1.0		x(t)

(t) : presente anche a tetto * strato fillosilicatico

Stendimento n. : St.25	25 Orientazione : 1		N 116 Verso : ESE		– WNW	Lunghe	ezza : 5.40 m			
5					dall'origine	Scabi	rezza	Apertura	Resistenza a	
Discontinuità	Ori	Orientazione		dello ste	dello stendimento		Profilo	massima	compressione JCS ^(a)	Persistenza
	imı	n	incl		(m)	Classi di Barton	tipico	(mm)	Kg/cmg	
1	14	1	74		5.4	6 – 8	VIII	2.0	rigioniq	x (t)

(t) : presente anche a tetto

Stendimento n. 2 St.26	Stendimento n. 26 Orientazione : St.26		N 26	Verso : NNE	– SSW	Lunghe	Lunghezza : 8.30 m				
Discontinuità	Orienta imm	azione incl		a dall'origine endimento (m)	JRC Classi di Barton	Profilo tipico	Apertura massima (mm)	Resistenza a compressione JCS ^(a) Kg/cmq	Persistenza		
1	157	77	0.0 a 2	.0 m da terra	6 – 8	VIII	esposta	401.55	x (t)		
2	032	85		1.1	8 – 10	VIII	esposta	534.03	d		
3	152	79	1.1 a 2	.0 m da terra	6 – 8	VIII	esposta	441.58	d		
4	206	57		2.9	6 – 8	V	chiusa		x(t)		
5	210	60		3.9	6 – 8	V	5.0		x(t)		
6	200	57		7.9	6 – 8	V	2.0		x(t)		
7	195	55	8.30 a ⁻	1.5 m da terra	6 – 8	V	2.0		x(t)		
8	198	52	8.30 a	8.30 a 1.8 m da terra		V	5.0		x(t)		
9	200	55	8.30 a 3	8.30 a 3.8 m da terra		V	3.0		x(t)		
10	201	55	8.30 a	1.2 m da terra	6 – 8	V	3.0		x(t)		

(t) : presente anche a tetto

Stendimento n. 2 St.27	tendimento n. 27 Orientazione St.27		N 118	Verso : WNV	V – ESE	Lungh	ezza : 30.00 ı		
Discontinuità	Orient	aziono		Distanza dall'origine dello stendimento		rezza	Apertura massima	Resistenza a	Persistenza
Discontinuita	ntinuità Orientazione		dello ste	numento	JRC Classi di	Profilo	IIIassiiiia	compressione	reisisieriza
	imm	incl		(m)		tipico	(mm)	JCS ^(a) Kg/cmq	
1	195	55	0.0 a 1	.5 m da terra	6 – 8	V	2.0		x(t)
2	198	52	0.0 a 1	.8 m da terra	6-8	V	3.0		x(t)
3	200	55	0.0 a 3	.8 m da terra	6-8	V	3.0		x(t)
4	201	55	0.0 a 4	.2 m da terra	6-8	V	3.0		x(t)
5	207	10	0.0 a 4	.5 m da terra	6 – 8	VIII	chiusa		d
6	025	50		7.8	10 - 12	VIII	3.0		x(t)
7	167	78		8.7	8 - 10	VIII	chiusa		x(t)
8	170	79		9.1	8 - 10	VIII	chiusa		x(t)
9	105	80		14.3	8 - 10	VIII	chiusa		x(t)
10	028	53		14.4	8 - 10	VIII	1.0		d
11	110	80		14.9	10 – 12	VIII	1.0		Х
12	335	89		21.6		VIII	chiusa		rx
13	044	88		22.5		VIII	chiusa		rx
14	310	30		25.5	8 – 10	VIII	chiusa		rx

(t) : presente anche a tetto

STENDIMENTI DA ARCHIVIO CAVA "MANDRIA" (2017) (da Piano di Coltivazione autorizzato)

Stendime		Orientazion	ne : N 118 Ver		erso : ESE – WNW		Lunghezza : 26.40		m	
archivio	Ar1									
	Orientazio		Distanza	Distanza Scabrezza		ezza	ezza Apertura		Resistenza a	
Discontinuità	imm	incl	dall'origine (m)	Э	JRC classi di Barton	Profi tipic		(mm)	compressione JCS Kg/cmg	Persistenza
	000		` ′	` ′					. 19/ 51.19	
1	<mark>223</mark>	<u> 15</u>	7.0		6 – 8	VI	Ш	2		X
2	<mark>195</mark>	78	7.5 (a 1.0 m da te	rra)	6 – 8	VI	II	1	452.20	х
3	218	72	9.0		6 – 8	VI	II	10	521.49	x
4	122	53	21.50		6 – 8	V		2		Х

Stendimen archivio		Orientazion			o : NNE – SSV	٧	Lung	hezza : 28.00	m	
	Orie	entazione	Distanza		Scabrezza			Apertura	Resistenza a	
Discontinuità	imm incl		dall'origine (m)		JRC classi di Barton	Profil tipico		(mm)	compressione JCS Kg/cmq	Persistenza
1	<mark>238</mark>	10	0.0 (a 8.5 m da te	0.0 (a 8.5 m da terra)		V		chiusa		X
2	<mark>235</mark>	9	0.0 (a 7.7 m da te	erra)	6 – 8	V		chiusa		х
3	<mark>235</mark>	9	0.0 (a 7.1 m da te	erra)	6 – 8	V		chiusa		х
4	<mark>235</mark>	16	0.0 (a 6.1 m da te	erra)	6 – 8	V		chiusa		х
5	<mark>235</mark>	<u>15</u>	0.0 (a 5.5 m da te	erra)	6 – 8	V		chiusa		х
6	<mark>238</mark>	10	0.0 (a 2.7 m da te	erra)	6 – 8	V		chiusa		х
7	308	88	9.5		6 – 8	VII	I	1		d
8	223	73	13.9		6 – 8	VII	I	5		х
9	306	89	15.3		6 – 8	VII	I	chiusa		d
10	220	73	17.9		6 – 8	VII	I	10		х
11	218	71	20.8		6 – 8	VII	I	10	·	Х
12	305	87	24.6		6 – 8	VII		1		rx
13	218	74	26.7		6 – 8	VII	I	1		rx

Stendime		Orientazio	rientazione : N 135 Verso		o : NW – SE		Lung	hezza : 18.50	m	
archivi										
	_	entazione	Distanza		Scabrezza			Apertura	Resistenza a	
Discontinuità			dall'origir	ie	JRC	Profil	0	, ,	compressione	Persistenza
	imm	incl			classi di	tipico)	(mm)	JCS	
			(m)		Barton				Kg/cmq	
1	235	15	0.0		6 – 8	V		1		х
		•	(a 2.5 m da t	erra)						
2	230	12	0.0		8 – 10	V		1		х
3	<mark>231</mark>	10	2.7		6 – 8	V		chiusa		х
4	215	67	3.9		6 – 8	VII	I	3		х
5	234	15	6.7		6 – 8	V		chiusa		х
6	234	11	7.3		6 – 8	V		chiusa		rx
7	237	12	8.3		6 – 8	V		chiusa		х
8	235	12	9.1		6 – 8	V		chiusa		x
9	133	45	10.0		6 – 8	V		esposta	373.92	х
10	308	83	10.0		6 – 8	VII	I	chiusa		rx
11	300	82	10.5		6 – 8	VII	I	chiusa		rx
12	307	85	11.1		6 – 8	VII	I	1		х
13	208	74	18.5		6 – 8	VII	I	2	421.09	Х

Nelle tabelle sopra riportate sono illustrati, per ogni superficie di discontinuità, i seguenti dati e parametri caratteristici:

- n° della discontinuità ; numero progressivo che definisce il giunto
- Orientazione ; rappresenta i parametri giaciturali delle discontinuità quali immersione ("imm") ed inclinazione ("incl"); i vari sistemi, i cui piani medi sono illustrati nelle tabelle 2, 3 e 4, sono indicati con diversa colorazione:

223; 49 : sistema K1 305; 81 : sistema K2 030; 68 : sistema K3(a) 070; 48 : sistema K4(b) 178; 83 : sistema K4(b) 045; 87 : sistema K4(c) 012; 82 : sistema K4(c) 211; 14 : sistema K5(a) 040; 09 : sistema K5(b) 110; 28 : sistema K6 329; 30 : sistema K7 118; 75 : sistema K8

- Posizione ; indica la posizione del giunto all'interno dello stendimento intesa come distanza orizzontale dall'origine.

La posizione del giunto è un parametro molto importante in quanto permette di determinare il valore della spaziatura; la spaziatura, definita come distanza media tra due discontinuità, permette di definire la distribuzione areale dei giunti e quindi la densità di fratturazione

- Scabrezza; definisce le caratteristiche geometriche delle pareti delle superfici di frattura mediante il valore di JRC (*Joint Roughness Coefficient*) di Barton; il profilo di scabrezza è stato determinato con profilometro per tratti di discontinuità della lunghezza di 10 cm e messo a confronto con le classi di scabrezza proposte da Barton, definendo il parametro JRC per ogni sistema di discontinuità
- Apertura ; distanza perpendicolare tra le pareti adiacenti della discontinuità: il valore riportato nelle tabelle si riferisce all'apertura massima
- Resistenza delle pareti dei giunti ; resistenza del materiale che costituisce le pareti della superficie di discontinuità. Si determina convenzionalmente definendo il parametro JCS (*Joint Wall Compressive Strenght*), determinato mediante l'esecuzione di tests con Martello di Schmidt o con tests sclerometrici opportunamente elaborati.

Le prove sono state effettuate sulle fratture che permettono il corretto posizionamento dello strumento.

- Persistenza ; lunghezza della traccia di ogni superficie di discontinuità in esposizione: tale caratteristica è anche detta estensione. Essa è stata definita mediante la sigla che, secondo lo schema seguente, caratterizza le estremità del giunto:
 - *tipo x* : il giunto è molto persistente e si estende oltre il campo visivo; esso viene definito "sistematico"
 - tipo d: il giunto si interrompe all'intersezione con un'altra discontinuità; esso viene definito "sub-sistematico"
 - tipo r: il giunto termina in roccia; esso viene definito "non sistematico"
 - tipo rx : il giunto termina in roccia ad un'estremità e continua oltre il campo visivo all'altra estremità; esso viene considerato a comportamento "non sistematico".